
■t

R.C Holt
J.N.P Hume

t • ‘ 1 !

1?

1

MILLSTEIN LIBRARY

Digitized by the Internet Archive
in 2018 with funding from
Kahle/Austin Foundation

https://archive.0rg/details/programmingstandOOOOholt

ras

■*

li n'lr-

y'-

If

.1- r

St ^•'

I.*
ii

•?'

4

• *

41

PROGRAMMING
STANDARD

PASCAL

R. C. Holt
J. N. P. Hume

Department of Computer Science
University of Toronto

RESTON PUBLISHING COMPANY, INC., Reston, Virginia
A Prentice-Hall Company

University or Pitiso«nii
At Greensbarg

libnirv

Library of Congress Cataloging in Publication Data

Holt, Richard C
Programming standard Pascal.

Includes index.
1. PASCAL (Computer program language) I.

J. N. P., joint author. II. Title.
QA76.73.P2H64 001.64*24 80-456
ISBN 0-8359-5691-1
ISBN 0-8359-5690-3 pbk.

(S) 1980 by
RESTON PUBLISHING COMPANY, INC., Reston, Virgi

A Prentice-Hall Company

All rights reserved. No part of this
book may be reproduced in any way,
or by any means, without permission
in writing from the publisher.

10 9876543

Printed in the United States of America.

Hume,

ia 22090

PREFACE

This book is intended to form the basis of an introductory
course in computing. No particular mathematical background
beyond basic arithmetic is assumed; examples are taken largely
from everyday life. In this way, the focus is on programming and
problem solving, rather than on mathematics. It is our strong
conviction that the foundation of computer programming must be
carefully laid. Bad habits once begun are hard to change. Even
^OT those who do not continue to study computer science, an
experience in the systematic analysis of problems from the
statement of what is to be done" to the final algorithm for
"doing it" can be very helpful in encouraging logical thinking.

The programming language presented here is Pascal, a high-
level language that encourages good programming style. The
language Pascal was devised by Niklaus Wirth and his book "Pascal
User Manual and Report" with Kathleen Jensen contains the
definition of what is called Standard Pascal. One of the great
advantages of Pascal over other high-level languages is that it
is not a language with a very large number of language
constructs. It is possible because of this to implement it even
on very small computer systems from minicomputers to
microcomputers. This book can be used with any Pascal compiler
that supports Standard Pascal, such as UCSD Pascal and Pascal
6000 .

In this book. Standard Pascal is introduced in a series of
subsets that we call PS/1, PS/2, PS/3, and so on. The PS stands
for Pascal Subsets. The book is about structured programming and
that is what we hope a student will be learning by following this
step-by-step presentation of Standard Pascal subsets.

Just as a program provides a list of instructions to the
computer to achieve some well-defined goal, the methodology of
structured programming provides a list of instructions to persons
who write programs to achieve well-defined goals. The goals of

Hi

iv Preface

structured programming are to get a programming job done
correctly and in such a form that later modifications can be done
easily. This means that programs must be understood by people

other than their authors.

As each Pascal subset is learned, new possibilities open up.
Even from the first subset PS/1, it is possible to write programs
that do calculations and print. By the time the subset PS/5 is
reached, a student has learned how to handle alphabetic
information, as well as to do numerical calculations and

structure the control flow of the program.

Structured programming is especially important when working
on larger programs; a detailed discussion of the techniques of
modular programming and top-down design accompanies the

introduction of Pascal subprograms in PS/6.

Many examples in the book are from data processing, and in
PS/8 the ability to handle files and records is introduced.
General concepts of data structures, searching, and sorting fit
well into this important area that touches all our lives.

The book includes examples of scientific calculations and
numerical methods and a chapter comparing various high-level
languages. It ends with a discussion of the operation of a
computer and the translation of a high-level programming language

into machine language.

At all times we have tried to present things in easy to
understand stages, offering a large number of program examples
and exercises to be done by the student. Each chapter has a
summary of the important concepts introduced in it.

The subsets PS/1, PS/2, PS/3, ..., referred to as a group by
the name PS/k, are based on subsets for PL/1 called SP/k designed
by Richard Holt and David Wortman of the University of Toronto.

This book was prepared using a text editing system on a
computer. Each program was tested using a Pascal compiler. The
job of transcribing the authors' pencil scrawls into the computer
was done with great care and patience by Inge Weber. The book
has ‘been class tested. We are indebted to many people but rather
than mentioning a lot of names here we have sprinkled through the

book names of people who have helped us.

The time taken to write a book comes at the expense of other
activities. Since most of the time was in the evenings or
weekends we must end with grateful thanks to our wives Marie and

Patricia.

R.C. Holt

J.N.P. Hume

CONTENTS

1. INTRODUCTION TO STRUCTURED PROGRAMMING 1

WHAT IS PROGRAMMING? 1

WHAT IS STRUCTURED PROGRAMMING? 2
WHAT IS PASCAL? 3

WHAT IS PS/k? 4

WHY LEARN JUST A SUBSET? 4
CORRECTNESS OF PROGRAMS 5
SUMMARY 5

2. THE COMPUTER 7

PARTS THAT MAKE THE WHOLE 7
CODED INFORMATION 8

MEMORY 9

ARITHMETIC UNIT 12
CONTROL UNIT I3

INPUT AND OUTPUT 14
PROGRAM TRANSLATION 1 5

SUMMARY 17

3. PS/1: PROGRAMS THAT CALCULATE AND OUTPUT 19

CHARACTERS 19

NUMBERS 21
CHARACTER STRINGS 22
EXPRESSIONS 23

EXAMPLES OF ARITHMETIC EXPRESSIONS 24
PRINTING 24
FORMATTING AND PRINTING 26
THE PROGRAM 27
CONTROL CARDS 28
AN EXAMPLE PROGRAM 29
SUMMARY 29
EXERCISES 31

vi Contents

4. PS/2: VARIABLES, CONSTANTS, AND ASSIGNMENTS 33

VARIABLES 33
DECLARATIONS 34
ASSIGNMENT STATEMENTS 35
TRACING EXECUTION 37
INPUT OF DATA 39
CONVERSION BETWEEN INTEGER AND REAL 40

COMMENTS ^

AN EXAMPLE JOB ^1
LABELING OF OUTPUT ^3
PROGRAM TESTING
COMMON ERRORS IN PROGRAMS ^7
SUMMARY ^8
EXERCISES 50

5. PS/3: CONTROL FLOW

COUNTED LOOPS
CONDITIONS
BOOLEAN VARIABLES
CONDITIONAL LOOPS
READING INPUT
EXAMPLES OF LOOPS 80
BRANCHES IN CONTROL FLOW 84
THREE-WAY BRANCHES 85
CASE STATEMENTS 87
EXAMPLE IF STATEMENTS 88
PARAGRAPHING THE PROGRAM 89

SUMMARY
EXERCISES

6. STRUCTURING CONTROL FLOW 77

BASIC STRUCTURE OF LOOPS 77

FLOW CHARTS
PROBLEMS WITH LOOPS 8*'
NESTED LOOPS 8”’
AN EXAMPLE PROGRAM 83
LOOPS WITH MULTIPLE CONDITIONS 85
IF STATEMENTS WITH MULTIPLE CONDITIONS 86

SUMMARY 8^
EXERCISES 88

7. PS/4; ARRAYS 81

DECLARATION OF ARRAYS 81
TWO-DIMENSIONAL ARRAYS 83
AN EXAMPLE PROGRAM 84
SUBRANGE TYPES 86
NAMED TYPES 87
ARRAYS OF ARRAYS 87
ARRAYS AS DATA STRUCTURES 88
OTHER DATA STRUCTURES 89
SUMMARY ‘'8 8
EXERCISES ‘'8''

Contents vii

8. PS/5: ALPHABETIC INFORMATION HANDLING 103

CHARACTER STRINGS 103
READING AND PRINTING CHARACTERS 104
READING AND PRINTING LINES 106
DETECTING END-OF-FILE 107
USING EOF WHEN READING NUMBERS 108
USING STRINGS OF CHARACTERS 110
COMPARISON OF STRINGS FOR RECOGNITION 110
SEQUENCING STRINGS 112
HANDLING ARRAYS OF STRINGS 113
AN EXAMPLE PROGRAM 1 15

CONVERTING BETWEEN CHARACTERS AND NUMBERS 117
CHAR AS A SCALAR TYPE 118
ENUMERATED TYPES 121
SUMMARY 123
EXERCISES 125

9. STRUCTURING YOUR ATTACK ON THE PROBLEM 129

STEP-BY-STEP REFINEMENT 129
TREE STRUCTURE TO PROBLEM SOLUTION 130
CHOOSING DATA STRUCTURES 131
GROWING THE SOLUTION TREE 131
DEVELOPING AN ALGORITHM 132
THE COMPLETE PROGRAM I34

ASSESSING EFFICIENCY I35

A BETTER ALGORITHM 136
BETTER ALGORITHMS I37

SUMMARY 138
EXERCISES 139

10. THE COMPUTER CAN READ ENGLISH I43

WORD RECOGNITION I44

WORDS WITH PUNCTUATION I47

WORD STATISTICS 148
READING PASCAL I50

SUMMARY 150
EXERCISES 151

11. PS/6: SUBPROGRAMS I53

PROCEDURES I53

FUNCTIONS 155
NESTING AND SUBPROGRAMS I57

ACTUAL PARAMETERS AND FORMAL PARAMETERS 159
ARRAY VARIABLES AND CONSTANTS

AS ACTUAL PARAMETERS 161
GLOBAL AND LOCAL VARIABLES 162
SUMMARY 163
EXERCISES 166

via Contents

12. MODULAR PROGRAMMING 169

A PROBLEM IN BUSINESS DATA PROCESSING 169

DIVIDING THE PROGRAM INTO PARTS 171

COMMUNICATION AMONG MODULES 171

WRITING THE MODULES 173

THE COMPLETE PROGRAM 175

USING MODULES 176

MODIFYING A PROGRAM 177

SUMMARY 178

EXERCISES 178

13. SEARCHING AND SORTING 181

LINEAR SEARCH 181
TIME TAKEN FOR SEARCH 183

BINARY SEARCH 183
A PROCEDURE FOR BINARY SEARCH 184

SEARCHING BY ADDRESS CALCULATION 187

SORTING ‘'88

SORTING BY MERGING 188

EFFICIENCY OF SORTING METHODS 189

SUMMARY “'8 0

EXERCISES ‘'81

14. MAKING SURE THE PROGRAM WORKS 193

SOLVING THE RIGHT PROBLEM 193

DEFENSIVE PROGRAMMING 194

ATTITUDE AND WORK HABITS 194

PROVING PROGRAM CORRECTNESS 194

PROGRAMMING STYLE 195

USE OF COMMENTS AND IDENTIFIERS 195

TESTING ‘'87

DEBUGGING 189

SUMMARY 201

EXERCISES 202

15. PS/7: FILES AND RECORDS 203

RECORDS 203

MOVING RECORDS 204

ARRAYS OF RECORDS 205

INPUT AND OUTPUT OF RECORDS 206

FILES IN SECONDARY MEMORY 208

FILE MAINTENANCE 210

PASCAL TEXT FILES 212

SUMMARY ? 1 2
EXERCISES 215

16. DATA STRUCTURES 217

LINKED LISTS 217

INSERTING INTO A LINKED LIST 219

MEMORY MANAGEMENT WITH LISTS 219

PROCEDURE FOR INSERTING INTO A LINKED LIST 220

DELETING FROM A LINKED LIST 223

RECORDS AND NODES 223

Contents IX

STACKS 224

RECURSIVE PROCEDURES 225

queues 226

TREES 228

ADDING TO A TREE 229

DELETING FROM A TREE 230

PRINTING A TREE IN ORDER 231

SUMMARY 232

EXERCISES 233

17. PS/8s POINTERS AND FILE BUFFERS 237

POINTERS 237

MEMORY MANAGEMENT WITH POINTERS 239

DANGLING POINTERS 240

USING POINTERS 241

FILE BUFFERS 242

FILE MERGE USING BUFFERS 243

SUMMARY 245

EXERCISES 246

18. SCIENTIFIC CALCULATIONS 247

EVALUATING FORMULAS 248

PREDECLARED FUNCTIONS 249

GRAPHING A FUNCTION 250

A PROCEDURE FOR PLOTTING GRAPHS 252

USING THE GRAPH PROCEDURE 254

FITTING A CURVE TO A SET OF POINTS 255

SOLVING POLYNOMIAL EQUATIONS 256

SOLVING LINEAR EQUATIONS 258

COMPUTING AREAS 258

SUMMARY 259

EXERCISES 261

19. NUMERICAL METHODS 263

EVALUATION OF A POLYNOMIAL 263

ROUND-OFF ERRORS 265

LOSS OF SIGNIFICANT FIGURES 265

EVALUATION OF INFINITE SERIES 266

ROOT FINDING 269

PROCEDURE FOR ROOT FINDING 270

NUMERICAL INTEGRATION 271

LINEAR EQUATIONS USING ARRAYS 273

LEAST SQUARES APPROXIMATION 274

MATHEMATICAL SOFTWARE 275

SUMMARY 276

EXERCISES 278

20. PROGRAMMING IN OTHER LANGUAGES 281

PL/1 and fortran 77 282

ALGOL 60 286

COBOL 287

X Contents

SUMMARY 289

EXERCISES 290

21. ASSEMBLY LANGUAGE AND MACHINE LANGUAGE 291

MACHINE INSTRUCTIONS 291
INSTRUCTIONS FOR A VERY SIMPLE COMPUTER 293

TRANSLATION OF A PASCAL PROGRAM 294

MNEMONIC NAMES AND MACHINE LANGUAGE 294

STORING MACHINE INSTRUCTIONS IN WORDS 296

A COMPLETE MACHINE LANGUAGE PROGRAM 297

SIMULATING A COMPUTER 299

USES OF SIMULATORS 301

SUMMARY 302

EXERCISES 303

22. PROGRAMMING LANGUAGE COMPILERS 305

A SIMPLE HIGH-LEVEL LANGUAGE 305

SYNTAX RULES 306
USING SYNTAX RULES TO PRODUCE A PROGRAM 308

ACTIONS OF THE COMPILER 311

SCANNING WORDS AND CHARACTERS 313

COMPILING ASSIGNMENT STATEMENTS 314

COMPILING WRITELN STATEMENTS 315

COMPILING WHILE AND END 316

THE COMPILER 318

RUNNING THE COMPILED PROGRAM 323

SUMMARY 325

EXERCISES 326

APPENDIX 1; SPECIFICATIONS FOR THE PS/k LANGUAGE 329

APPENDIX 2: SYNTAX OF PS/k 349

APPENDIX 3: PREDECLARED PASCAL FUNCTIONS 353

APPENDIX 4: SUMMARY OF PASCAL INPUT/OUTPUT FEATURES 355

APPENDIX 5: COLLATING SEQUENCE 359

APPENDIX 6: SYNTAX DIAGRAMS FOR FULL PASCAL 363

INDEX 367

Chapter 1
INTRODUCTION TO STRUCTURED

PROGRAMMING

We hope that it is no secret that the book has to do with

computers and particularly with the use of computers rather than

their design or construction. To use computers you must learn

how to speak their language or a language that they can

understand. We do not actually speak to computers yet, although

we may some day; we write messages to them. The reason we write

these messages is to instruct the computer about some work we

would like it to do for us. And that brings us to programming.

WHAT IS PROGRAMMING?

Programming is writing instructions for a computer in a

language that it can understand so that it can do something for

you. You will be learning to write programs in one particular

programming language called Pascal. When these instructions are

entered into a computer directly by means of a keyboard input

terminal or are put on to some medium that a computer can read

such as punched cards and' then fed into the machine, they go into

the part of the computer called its memory and are recorded there

for as long as they are needed. The instructions could then be

executed if they were in the language the computer understands

directly, the language called machine language. If they are in

another language such as Pascal they must first be translated,

and a program in machine language compiled from the original or

source program. After compilation the program can be executed.

Computers can really only do a very small number of different

basic things. For example, an instruction which says, STAND ON

YOUR HEAD, will get you nowhere. The repertoire of instructions

that any computer understands usually includes the ability to

move numbers from one place to another in its memory, to add,

subtract, multiply, and divide. They can, in short, do all kinds

2 Introduction to Structured Programming

of arithmetic calculations and they can do these operations at
rates of up to a million a second. Computers are extremely fast
calculating machines. But they can do more; they can also handle
alphabetic information, both moving it around in their memory and
comparing different pieces of information to see if they are the
same. To include both numbers and alphabetic information we say
that computers are data processors or more generally information

processors.

When we write programs we write a sequence
that we want executed one after another. But you
the computer could execute our programs very
instruction were executed only once. A program
instructions might take only a thousandth of a
the instructions we can include in our programs is
which causes the use of other instructions to be
and over. In this way the computer is capable o
work; it tirelessly executes the same set of inst
and again. Naturally the data that it is opera
change with each repetition or it would accomplish

of instructions
can see that

rapidly if each
of a thousand
second. One of

an instruction
repeated over

f repetitious

Perhaps
decisions.

you have heard also that comp
In a sense they can. These so-called

fairly simple. The instructions read something like this;

ructions again
ting on must
nothing.

ers can make
decisions are

IF JOHN IS OVER 16 THEN PLACE HIM ON THE HOCKEY TEAM
ELSE PLACE HIM ON THE SOCCER TEAM

Depending on the condition
place his name on one or other
can decide which one if you

of John's age, the computer could
of two different sports teams. It
tell it the decision criterion,, in
or not. our example being over sixteen

Perhaps these first few hints will give you a clue to what
programming is about.

WHAT IS STRUCTURED PROGRAMMING?

Certain phrases get to be popular at certain times; they are
fashionable. The phrase, "structured programming" is one that
has become fashionable. It is used to describe both a number of
techniques for writing programs as well as a more general
methodology. Just as programs provide a list of instructions to
the computer to achieve some well-defined goal, the methodology
of structured programming provides a list of instructions to
persons who write programs to achieve some well-defined goals.
The goals of structured programming are, first, to get the job
done. This deals with how to get the job done and how to get it
done correctly. The second goal is concerned with having it done
so that other people can see how it is done, both for their
education and in case these other people later have to make
changes in the original programs.

What is Pascal? 3

Computer programs can be very simple and straightforward but
many applications require that very large programs be written.
The very size of these programs makes them complicated and
difficult to understand. But if they are well-structured, then
the complexity can be controlled. Controlling complexity can be
accomplished in many different ways and all of these are of
interest in the cause of structured programming. The fact that
structured programming is the "new philosophy" encourages us to
keep track of everything that will help us to be better
programmers. We will be cataloguing many of the elements of
structured programming as we go along, but first we must look at
the particular programming language you will learn.

WHAT IS PASCAL?

Pascal is a language that has been developed to be
independent of the particular computer on which it is run and
oriented to the problems that persons might want done. We say
that Pascal is a high-level language because it was designed to
be relatively easy to learn. As a problem-oriented language it
is concerned with problems of numerical calculations such as
occur in scientific and engineering applications as well as with
alphabetic information handling required by business and
humanities applications.

Pascal is a reasonably extensive language, so that although
each part is easy to learn, it requires considerable study to
master. Many different computer installations, ranging in size
from large computers to microcomputers, have the facilities to
accept programs written in Pascal. This means that they have a
Pascal compiler that will translate programs written in Pascal
into the language of the particular machine that they have. Also
many programs have already been written in Pascal; in some
installations a standard language is adopted, and Pascal is
sometimes that standard language.

It has been the experience over the past years that a high-
level language lasts much longer than machine languages, which
change every five years or so. This is because once an
investment has been made in programs for a range of applications,
an installation does not want to have to reprogram when a new
computer is acquired. What is needed is a new compiler for the
high-level language and all the old programs can be reused.

Because of the long life-span of programs in high-level
languages it becomes more and more important that they can be
adapted to changes in the application rather than completely
reconstructed.

A high-level language has the advantage that well-constructed
and well-documented programs in the language can be readily
modified. Our aim is to teach you how to write such programs.

4 Introduction to Structured Programming

To start your learning of Pascal we will study subsets of the
full Pascal language called PS/k.

WHAT IS PS/k?

The PS in the name PS/k stands for "Pascal Subset". There
really is a series of subsets beginning at PS/1, then PS/2, and
going on up. The first subset contains a small number of the
language features of Pascal, but enough so that you can actually
write a complete program and try it out on a computer right away.
The next subset, PS/2, contains all of PS/1 as well as some
additional features that enlarge your possibilities. Each subset
is nested inside the next higher one so that you gradually build
a larger and larger vocabulary in the Pascal language. At each
stage, as the special features of a new subset are introduced,
examples are worked out to explore the increased power that is
available.

THE PS/k SUBSETS

In a
structured
you learn.

sense, the step-by-step approach to learning Pascal is
and reflects the attitude to programming that we hope

so
There is no substitute for practice in learning to program,

as soon as possible and as often as possible, submit your
knowledge to the test by creating your own programs.

WHY LEARN JUST A SUBSET?

The Pascal language is reasonably extensive; some features
are only used rarely or by a few programmers. If you know
exactly what you are doing, then these features may provide a
faster way to program; otherwise they are better left to the
experts. A beginner cannot really use all the features of the
complete Pascal language and will get lost in the complexity of
the language description. With a small subset it is much easier
to pick up the language and then get on with the real job of
learning programming.

Correctness of Programs 5

But perhaps most important, the PS/k language has been
selected from the Pascal language so as to provide the basic
features that encourage the user to produce well-structured
programs. This is why it is so appropriate as a means of
learning structured programming.

CORRECTNESS OF PROGRAMS

One of the maddening things about computers is that they do
exactly what you tell them to do rather than what you want them
to do. To get correct results your program has to be correct.
When an answer is printed out by a computer you must know whether
or not it is correct. You cannot assume, as people often do,
that because it was given by a computer it must be right. It is
the right answer for the particular program and data you provided
because computers now are really very reliable and rarely make
mistakes. But is your program correct? Are your input data
correct?

One way of checking whether any particular answer is correct
is to get the answer by some other means and compare it with the
printed answer. This means that you must work out the answer by
hand, perhaps using a hand calculator to help you. When you do
work by hand you probably do not concentrate on exactly how you
are getting the answer but you know you are correct (assuming you
do not make foolish errors). But this seems rather pointless.
You wanted the computer to do some work for you to save you the
effort and now you must do the work anyway to test whether your
computer program is correct. Where is the benefit of all this?
The labor saving comes when you get the computer to use your
program to work out a similar problem for you. For example, a
program to compute telephone bills can be checked for correctness
by comparing the results with hand computation for a number of
representative customers and then it can be used on millions of
others without detailed checking. What we are checking is the
method of the calculation.

We must be sure that our representative sample of test cases
includes all the various exceptional circumstances that can occur
in practice, and this is a great difficulty. Suppose that there
were five different things that could be exceptional about a
telephone customer. A single customer might have any number of
exceptional features simultaneously. So the number of different
types of customers might be 32, ranging from those with no
exceptional features to those with all five. To test all these
combinations takes a lot of time, so usually, we test only a few
of the combinations and hope all is well.

Because exhaustive testing of all possible cases to be
handled by a program is too large a job, many programs are not
thoroughly tested and ultimately give incorrect results when an
unusual combination of circumstances is encountered in practice.
You must try to test your programs as well as possible and at the

6 Introduction to Structured Programming

same time realize that with large programs the job becomes very
difficult. This has led many computer scientists to advocate the
need to prove programs correct by various techniques other than
exhaustive testing. These techniques rely partly on reading and
studying the program to make sure it directs the computer to do
the right calculation. Certainly the well-structured program

will be easier to prove correct.

CHAPTER 1 SUMMARY

The purpose of this book is to introduce computer
programming. We have begun in this chapter by presenting the
following programming terminology.

Program (or computer program) - a list of instructions for a
computer to follow. We say the computer "executes"
instructions.

Programming - writing instructions telling a computer to
perform certain data manipulations.

Programming language - used to direct the computer to do work
for us.

Pascal - a popular programming language. PL/1, Fortran,
Cobol, Basic and APL are some other popular programming

languages.

PS/k - the programming language used in this book. PS/k is a
subset of the Pascal programming language, meaning that
every PS/k program is also a Pascal program, but some
Pascal programs are not PS/k programs. PS/k is itself
composed of subsets PS/1, PS/2 and so on. This book
teaches PS/1, then PS/2, and so on up to PS/8.

High-level language - a programming language that is designed
to be convenient for writing programs. Pascal is a
high-level language.

Structured programming - a method of programming that helps
us write correct programs that can be understood by
others. The PS/k language has been designed to
encourage structured programming. This book teaches a
structured approach to programming.

Correctness of programs - the validity of programs should be
checked. This can be attempted by comparing test
results produced by the computer with the results of
calculations made in another way, e.g., by using a hand
calculator. Although the ideal is to try to prove a
program correct by mathematical means, it is often
extremely helpful to read and study the program to see
that your intentions will be carried out.

Chapter 2
THE COMPUTER

"The time has come," the walrus said, "to talk of many
things" - Lewis Carroll.

And the things we want to talk about in this chapter have to
do with getting to know a little bit about computers and how they
are organized. A computer is a complex object composed of wires,
transistors, and so on, but we will not be trying to follow
wiring diagrams and worrying about how to build a computer. What
we will be interested in is the various main parts of a computer
and what the function of each is. In this way your programming
will be more intelligent? you will* understand a little of what is
going on inside the computer.

PARTS THAT MAKE THE WHOLE

We have already mentioned a number of things about computers.
They have a memory where numbers and alphabetic information can
be recorded. They can add, subtract, multiply, and divide. This
means they have a part called the arithmetic unit. They can read
information off certain media, like punched cards, and print
results on printers. The printer may print a whole line at a
time or just one character at a time, like a typewriter. We say
they have an input (for example, a card reader) and an output (a
printer). The input-output unit is often referred to as the l/O.
Computers execute instructions in sequence. The part of the
machine that does this is called the control unit. The
arithmetic unit and the control unit are usually grouped together
in a computer and called the central processing unit or CPU. So
then the computer is thought of as having three parts, memory,
I/O and CPU.

7

8 The Computer

I/O CPU

MAIN PARTS OF A COMPUTER

We will look at these different parts in turn and see how they
work but first we must see how numbers and alphabetic information

can be represented in a computer.

CODED INFORMATION

You are all familiar w
travel over telegraph wires i
you know that each letter or
and dashes. For example, the
dash, E is one dot, V is thr
separated from each other by
famous signal SOS is

ith the way that in

n the form of Morse

number is coded as

letter A is a dot

ee dots and a dash,

a pause with no dot

formation used to
Code. Perhaps

a pattern of dots
followed by a
The letters are

s or dashes. The

This is an easy one to remember in emergencie
was designed so that the signal could activate
device and the listener could then translate
back into letters. Modern teletype machines c
much faster because the machines themselves can
the messages. For these, a character is repres
of pulses, each pattern being of the same 1
dots and dashes, which are two different len
pulses, they use one basic time interval
interval have either a pulse or a pause. Each
5 basic time intervals and is represented by a
and pauses. We often write down a pulse as a 1
and then the pattern for B is 10011, I is 01100
word BILL would be transmitted as

10011011000100101001

Strings of ones and zeros like this can
numbers in the binary system. In the decimal s

342 means

s. The Morse Code
some noise-making
the coded message

an send messages
be used to decode

ented by a pattern
ength. Instead of
gths of electric

and in that time
character requires
sequence of pulses

and a pause as 0,
, L is 01001. The

be associated with
ystem the number

3x10^4x10 ‘ +2x10
0

Memory 9

where 10^ stands for 10 squared, 1o' for 10 to the first power,
that is 10, and 10 for 10 to the power zero, which has a value
1. In the binary system of numbers 1101 means

1x2 %1x2^+0x2 ‘ + 1x2°

In the decimal system this binary number has a value 8+4+0+1;*13.
We say that this number in the decimal system requires 2 decimal
digits to represent it. In the binary system it requires 4
binary digits. We call a binary digit a bit. So the binary
number representing the word BILL has 20 bits, each letter
requiring 5 bits. Sometimes we take the number of bits required
to represent a character as a group and call it a byte. Then the
word representing BILL has four bytes. In a computer we must
have a way of recording these bits, and usually the memory is
arranged into words, each capable of holding a whole number of
bytes.

In some machines a single letter is represented by a byte of
six bits and the word length is 6 bytes or 36 bits. Most
minicomputers and microcomputers have 2 bytes in a word and 8
bits in each byte. There are many different combinations of byte
length and word length in different computers. This is something
the machine designer must decide.

MEMORY

Most machines record letters and numbers in the binary form
because it is possible to have recording devices that can record,
read, and hold such information. Most recording devices involve
a recording something like that on the tape of a magnetic tape
recorder. There is a big difference, though, in the recording.
On audio tape we have a magnetic recording that varies in
intensity with the volume of the sound recorded. The frequency
of the variations gives the pitch of the sound. For a computer,
the recordings vary between two levels of intensity which you
might think of as "on" and "off". If in a particular region
there is an "on" recording it could indicate the binary digit one
and if "off" the digit zero. So on a strip of magnetic tape
there would be designated areas that are to hold each bit of
information.

BITS RECORDED ON MAGNETIC TAPE

10 The Computer

Binary digits can thus be recorded on reels of magnetic tape.
In a similar way they can be recorded on tracks of a magnetic
disk and these disks can be stacked one above the other on a
spindle that is kept constantly spinning. To read or record
information on a magnetic disk the recording/reading head moves
to the correct track of the correct disk.

MAGNETIC DISK MEMORY

This kind of memory is called a magnetic disk pack and is
commonly used when large amounts of information are to be stored
in the computer and requested randomly. If information is to be
retrieved in a particular sequence or order then a magnetic tape
reel can be used to store it. Tape reels and disk packs can be
removed from the machine and stored if you need to keep
information for long periods of time. Smaller disk memories can
be used where individual disks are inserted into the reader by
the user. These disks are often limp and are called floppy
disks. Tape reels on regular audio-type cassettes can also be
used as secondary memory.

Neither tape nor disks are as fast to read and write as
another type of magnetic recording on the surface of a constantly
spinning cylinder called a drum.

All these devices require the movement of objects, a reel of
tape, a spinning disk or drum, and sometimes read/write heads.
These mechanical devices can never give really high-speed access
to information. We need memory devices with no moving parts so
we can perform operations at rates of the order of a million a
second. The only things that move in a really high-speed memory
device are the electric signals. As you know, electric signals
can move very rapidly, at nearly the speed of light. A very
common form of high-speed memory used before the advent of large
scale integrated circuits were developed was the magnetic core
memory. A magnetic core is a tiny doughnut-shaped piece of
material that can be magnetized. When magnetized it is like a
bar magnet bent around in a circle.

The Contents of Words in Memory 11

MAGNETIC CORE

There are two directions in which a core can be magnetized,
clockwise and counter-clockwise, and these can represent the two
binary digits. To form a memory the cores are threaded on to
wires in two directions just like a fly screen, with a core
around every intersection of the wires. When signals pass
through the wires they can record information in the cores or
read out information from the cores, and it can all happen
extremely rapidly.

MAGNETIC CORE MEMORY

If the main memory of the computer is made of magnetic cores
grouped into words, to find any particular word you need to know
where it is located in the array of cores. You need to know its
address. Every word (which, remember, is just a group of bits,
one bit in each core) has its own address which is a number. An
address may, for example, be 125. Words that are neighbors in
the array have consecutive addresses, such as 125 and 126, just
like houses on a street. The addresses themselves do not have to
be stored in the computer. You can tell what address a word has
from its location in the array. This is not always possible for
houses on the street because the numbering is not completely
systematic.

125

126

THE CONTENTS OF WORDS IN MEMORY

Sincfe the development of microminiaturized electronic
circuits on silicon chips, high-speed memory devices can be
produced using this solid state technology. Magnetic core
memories are now largely replaced by integrated circuits, but the
idea of memory address is the same.

1 I —r- —
3

“1-
1

—
2

1 1 1

__1_t 1

1

5
1

2
_

■"T- i

8
i

7

12 The Computer

ARITHMETIC UNIT

All
This is
memory
erased,
made on

computers have a part wher
the arithmetic unit. When a

number s location, the old
just as any old recording is

a magnetic tape recorder,
playing an audio recording, does not
matter how often you do it. If you
add them, it is usually done in a
arithmetic unit called the accumul
size of the accumulator is the same a
memory. Words, or rather the in

into the

would cause
the accumulal
would be e:

S , or ra
be loaded

ge. the in

LOAD 1 125

the number
r . Whatev
sed before

we would

e arithmetic can take place,
new number is written in a
tored there is automatically
erased as a new recording is
Just reading a number, like

damage the recording no
want to combine numbers, say

special location in the
ator. On some machines, the

of a word in
in memory
a simple

s the size ot a
formation stored
accumulator. In

in location 125 to be placed in
orded in the accumulator before
takes place. If we want to add

ADD 126

This would add the number stored in 126 to what was already in
the accumulator and the sum of the two numbers would then be in
the accumulator. This total could be recorded in the memory for
later use by the instruction

STORE 127

The result of the addition would now be in location 127 but would
also remain in the accumulator.

The accumulator can also be used for subtraction,
multiplication, and division. In a high-level language like
Pascal you never need to think about the accumulator. You merely
indicate that you want numbers in two locations, say A and B, to

added and name the location, say C, where you want the answer
You write this all in one statement, namely

be
to be stored.

C:-A+B

This Pascal statement
to the number stored in
location C. In the m
In Pascal we
identifiers.

give the 1(
The compiler

add the number stored i n
t ion B and place the
all loc ation addresses a

cat i ons names which a
cha nges these names t

result
. A
in

locations and changes the single instruction

C;-A+B

called
to numerical

to the three machine instructions.

Control Unit 13

LOAD A
ADD B
STORE C

CONTROL UNIT

You have just seen examples of machine language instructions.
They each consist of two parts: the operation part, for example
LOAD, and the address part, A. Each part can be coded as a
binary number, then the whole instruction will just be a string
of bits. Suppose that you have a machine with a word length of
36 bits. Then an instruction might be itself stored in such a
word with, say, 18 bits for the operation part and 18 bits for
the address part. With 18 bits you can represent binary numbers
that go from 1 up to 2 to the power 18, which is 262,144. You
can refer to any one of over a quarter of a million different
memory locations.

Consecutive instructions in a machine language program are
stored in consecutive locations in the memory and are to be
executed one after the other. The control unit does two things.
It uses a special location called the instruction pointer to keep
track of what instruction is currently being executed. It places
the instruction to be executed in a special location called the
control register. In the control register the instruction is
decoded and signals are issued to the different parts of the
computer so that the operation requested is actually carried out.
As each instruction is executed, the instruction pointer is
increased by one to give the address of the next instruction in
the program. This next instruction is then fetched from the
memory, placed in the control register, and executed. This
process continues, with instructions being executed sequentially
unless a special instruction is encountered, which resets the
instruction pointer and causes a jump from the normal sequence to
a different part of the program.

In brief, the control unit controls the sequence of execution
of instructions and determines the effect that execution has on
the information stored in the memory.

Computers were originally referred to as stored program
calculators because the instructions as well as the numbers or
characters they operate on are stored in the memory. They were
also referred to as sequential machines, because normally they
followed a sequence of instructions one after another unless a
jump instruction directed them to do otherwise.

We have said that the memory of a computer can be contained
on a single silicon chip. This is true also of the parts of the
computer that make up the central processing unit. If the CPU is
all on a single chip we call the computer a microprocessor.

14 The Computer

INPUT AND OUTPUT

We have spoken of having both data and instructions in the
memory of the machine and changing the data by the execution of
instructions. But how do we get data or instructions into the
computer, and how do we get data out of the machine after it has
been operated on? That is the function of the input and output
units. We must have instructions that cause the machine to read
information into its memory and to print information out from its
memory. And we must have parts of the computer, the input and
output units, that respond to these instructions. Most small
computers use individual input/output terminals at which
information can be entered through a keyboard and output is
produced as a display on a cathode ray tube (CRT) screen.
Sometimes there is also a printer for obtaining hard copy of what
can be seen on the screen. This same type of terminal may be
attached, perhaps by a telephone line, to a larger computer as
one of many terminals sharing the time of the computer. We say
that this is a time sharing arrangement for a number of
simultaneous users. Because each user enters his program and
data directly into the terminal and receives the results rapidly,
the system is often said to be an interactive system. However if
the system requires the complete program and data to be entered
before compilation and execution begins it is usually known as
batch processing.

Batch processing can also be done very effectively by having
each user prepare the program and data off-line and then submit
it to an input device for processing. The turnaround time
between submission and processing must be rapid if programs are
being developed but can be slower if planned production runs are
being made. One input device commonly used is a punched card
reader. You are all familiar with the standard punched card with
80 columns in which punching can take place.

/ /i fl1254^575^ 7rK'KrGHn»?LWf«P3ftSTIJVu>(V2 «/
lllllllll I I I II I

I lllllllll III I II I I

0 19 G 19 C G 0 O D I 0 9 0 0 9 n 3 0 0 0 n] C 9 0 0 D 0 >J llllllll 0 |G 0 C 0 |9 r Is |3 r 0 |G 0 0 C Id G C G 0 |o 9 0 0 0 0 9 0 0 G ?
I . i > i '» I Ml i j 1 M 'I :: 71 i i •• ;j li . . . j i ■ ? •. > * 9^ o 3 ii .i •' •, i- e: ». v ■;.. n 'i n ’ i.

i|iiiliiiiiMM|iiini!i|MiMiiMi'i)iiiniiiiiin|iiiiiM!iMinn|iinMiiiii

; 2222:l2222222?2l222232nl2:22:22|2n:?:222222'?293222?222|?222G|222M22G?22?M2

G333333|]33333G'^|]3333333|3G333G3|3G33333||||]33G33333333333]GGGG133]3333333G33

<4|4<444|94444444j|<44M444|4444M4|<44«44-34;4||||M4M49444444i'.'|444<l<4M44(4

5 5 5 3 5 > 5 5 5| 5 5 5 5 5 5 5 5 5 Is 5 5 5 5 5 5 5 Is 5 5 5 5 5 5 |5 5 9 5 j 5 5 5 5 5 5 5 5 5 C 5|| 5 5 5 5 5 5 Is 5 5| 5 5 5 5 3 5 5 5 5 5 5 5 5 5

6G35666666|S6SGS66SS|S(S6G66S|SGS66CG|6eeGGGG6CGCGa6|66SC|s|6SG|((6S(((S(eS(S(F$

n 1 n 1 111 n §1 n n n 11 li n 11111 §1 n 1 n] tn ' n n 111 m 111 h 111 li in 1 n 1111111 n n 1

99|lllin9Sl|9n998ll8|99eS9998|l8G88;3|98 IIIIg IIIIs ||||8 |||||||||9 |l 8 9 8 8 8 I (9 9 I I

9?18989999989|89999!J33|GG999385|*9!5G93|s999JS959!J!!!9!99959999995!999!9J!J99J
4*^5 .111./ . i i 1 II I ;i -1 . . :i m. i im i 4.- m ;j ; ^j ^ • ci i i i. u w is • ' / .’ . . r. • - 'it:

80-COLUMN PUNCHED CARD

Input and Output 15

For digits, a single hole is made in a column in the position
corresponding to the digits 0 to 9. Each alphabetic character
requires two holes in a column, one in a digit position and the
other in one of the three positions at the top of the card called
the 0,11, and 12 positions. Special characters like dollar signs
require that three holes be punched in a column. The actual
representations in terms of punched holes for each character or
digit can be fixed into a card punch keyboard so that when the
key on the keyboard for the character is pressed, the correct
punching occurs on the card. Many keypunches also interpret the
punching by printing the corresponding characters at the top of
the card above the column where the punching is. This is so that
you can read what is punched on the card. The machine can only
read the punching.

Sometimes cards are prepared by marking them with a soft
black pencil in certain designated areas. These marks are then
read by a reader that senses their presence, just as the punched
card reader senses holes. On mark sense cards digits require a
single mark, alphabetic characters and special characters require
two marks in the same column. Some keywords in the Pascal
language can be obtained by marks in the first column or at the
top of other columns.

When a mistake is made in punching cards, the card is to be
ejected from the punch and removed. A second attempt is then
made to produce a correctly punched card. One of the good things
about cards is that they can individually be replaced or removed
and new cards inserted in a card deck without having to repunch
the entire deck. Since instructions are placed in sequence,
usually one to a card, this sequence must be maintained. If you
drop a deck of cards they can get out of sequence and it is
difficult to get them arranged correctly again. Keep an elastic
band around your card decks to prevent accidents. The elastic is
removed as they are placed into the card reader then replaced
immediately after they are read.

The keyboard of a card punch or online computer input
terminal is similar to that of a standard typewriter, so it helps
if you can type. But hunt-and-peck methods will get you there
too. In addition to the ordinary typewriter keys, there are
special keys for indicating the end of the input for that card or
line. In all our examples we will think of a one to one
correspondence between individual punched cards and lines of
input on a CRT screen, and between printed lines and output lines
on the screen. Most CRT displays permit 80 characters to a line.

The hard copy output units can be line-at-a-time printers or
typewriters. The typewriters are the same as those used for
input with online terminals. When card decks are the form of
input, the output usually comes on the fast printers. Printers
can have very high speeds. A speed of 1000 lines a minute is
common, but some printers go faster. Most printers are slower.

16 The Computer

Across a printed page there are often positions to print 120,
132 or more characters although some printers print only 72
characters on a line. The paper is continuous but may be divided
by perforations into pages, each capable of holding about 60
lines of printing. Your output will probably be limited to a few
pages for each run on the computer. Because users' jobs on a
high-speed printer are run one after another each must be careful
to put an identification on the program so that the appropriate
output can be claimed. You have to tear the pages apart by hand
as the machine feeds paper continuously, piling the printer
output on the other side of the printer from the blank paper

supply.

PROGRAM TRANSLATION

We have said that
namely,

three machine language instructions.

LOAD A
ADD B
STORE C

correspond to what is written in Pascal as

C:-A+B

Instructions in the
simpler to write than
thing, you do not
another, the notation

high-level language Pascal are very much
instructions in machine language. For one
have to be aware of the accumulator; for
is very similar to the one used in simple

mathematical expressions and should be easy for you to get used
to. The Pascal language is more powerful in that a single Pascal
instruction can correspond to many machine language instructions.
We will see later that if you are working in a high-level
language, the machine can detect when you make certain kinds of
mistakes in your program.

In summary, high-level languages are designed to suit you
rather than suit a computer. And in being that way they make the
job of programming less difficult.

A Pascal program cannot execute directly on a computer but
must be translated into the language for the particular computer
you have. This is accomplished after the Pascal program has been
read in, or loaded into, the memory. The translation is
performed by another program, called the compiler, that is
already stored in the computer memory. The compiler reads your
Pascal program and produces the appropriate sequence of machine
language instructions from your Pascal statements. After
compilation, execution of the machine language program begins
automatically, provided you have not made any errors in your
Pascal program that the compiler can detect but cannot repair.
The kind of errors that are detectable are mostly in the form of

Chap ter 2 Summary 17

the statements. If they are not proper or grammatical statements
in the Pascal language the compiler will report an error to you
in your printout. Errors in grammar are called syntax errors.
In English you know there is an error in the sentence,

THE BOYS IS WALKING.

A machine can spot this kind of error but it cannot easily spot
an error in meaning. It might never determine that the sentence,

THE HOUSE IS WALKING.

is not a meaningful sentence; it would accept it as syntactically
correct.

Well, that is enough of an introduction now; let us get down
to actually writing programs.

CHAPTER 2 SUMMARY

In this chapter we presented the main parts of a computer and
showed how information is stored in the memory. We explained
briefly how a high-level language such as Pascal is translated,
or compiled, to machine language before being executed by a
computer. The following important terms were introduced.

Memory - the part
as data or a
are called
motion to ac
memory can be
memory may be
in the form
chip. We say
computer can
memory and ma

of a computer that stores
program. Magnetic tapes,
secondary memory; they
cess information stored
immediately accessed by
composed of magnetic cor

of a microminiaturized ci
the memory is a solid
transfer information

in memory.

information, such
disks, and drums

require mechanical
on them. Main

the computer; main
es but is usually
rcuit on a silicon
state one. The

between secondary

CPU (central processing unit) - composed of the arithmetic
unit and the control unit. The arithmetic unit carries
out operations such as addition and multiplication. The
control unit directs other parts of the computer,
including the arithmetic unit, to carry out a sequence
of instructions that is in the main memory.

Input and output - ways of getting information into and out
of a computer. The punch card, or IBM card, can be used
to prepare input for a computer. An input device called
a card reader is used to sense the holes in punch cards
and transmit the encoded information to the main memory.
An output device called a printer takes information from
main memory and prints it on paper.

18 The Computer

An input/output terminal suitable for use by
individual users is often a keyboard and a cathode ray
tube display screen attached directly (or perhaps by
telephone line) to the computer. We say this is online
with the computer.

Coded information - before information can be entered i
computer, it must be coded in a convenient form for
computer's circuitry. The circuitry recognizes
and "on" which we can think of as 0 and 1. The sma
unit of information is a binary digit, 0 or 1, cal
bit. Letters are represented in a computer
sequence of bits, called a byte. Bytes are arr
into words, typically four bytes to the word. The
memory of the computer is a sequence of words,
words can hold data and programs.

nto a
the

"off"
llest
led a
by a
anged
main

These

Translation (or compilation) - before a program written in a
language like Pascal can be executed by a computer, it
must be translated into machine language. The program
as written in Pascal is called the source program. The
translated program is placed in words in the main memory
and is executed by the computer's CPU.

Chapter 3

PS/1: PROGRAMS THAT
CALCULATE AND OUTPUT

This is the chapter where we set the stage for programming
and you meet the cast of characters in the play. Nothing very
much is going to happen in this first subset, PS/1, but you will
be able to go through the motions of writing a complete program,
submitting it to a computer and having it executed. This will
let you get used to the mechanics of running a keyboard input-
output terminal or, if you are handling cards, learn how to
arrange a card deck, and find out what you must do with it to get
it read by the computer. Also you will see what kind of output
to expect. Things will happen, though what the computer is
actually doing for you will not be very exciting yet. But
remember you will go through the same motions as are necessary
when your programs do have more content.

CHARACTERS

We will be learning the programming language Pascal a little
bit at a time. Any language consists of words and the words are
made up of symbols that we call characters. These characters are
put together in strings. In English the word

ELEPHANT

is a string of characters of length eight. It contains only
seven different characters, the character E being used twice. We
can tell that it is a word because it has a blank in front of it
and one at the end. In a way the blank is also a character, but
a special character for separating words. We sometimes denote
the blank by b when we print programs in this book so that you
can see how many blanks are present.

19

20 PS/1: Programs that Calculate arid Output

In English, we group
end of a sentence because
have a different kind of
don't we? In addition to
other punctuation marks
language easier to read,
a sentence. There is
sentence,

words into sentences and
of a special mark, the

sentence that ends with
periods and question

which serve to make
They also serve to remo
some doubt about the

we can
period.
a quest
marks,
sentenc
ve ambi

meani

tell the
We also

ion mark,
we have

es in the
guity in
ng of the

THE STUDENT CLAIMS THE TEACHER UNDERSTANDS.

The doubt is removed if it is written with commas. as ,

THE STUDENT, CLAIMS THE TEACHER, UNDERSTANDS.

It is important that statements in a programming language be
unambiguous, so punctuation is used a great deal. Instead of a
sentence, the basic unit in the main part of a program is a
statement. Statements are separated by semicolons. This serves
to separate them just as periods separate sentences in English.
The comma is used to separate items in any list of similar items,
and parentheses are used to enclose things that belong together.

We will have words in Pascal that are made up of letters of
the alphabet and might also have digits in them. When we are
writing a Pascal program we want it to be understandable. So we
choose words like English words. We use words like NAME, COST,
INCOME, TAX, INVOICE, SUM, or words like PAGE 1 , TABLE6, ITEM35,
and so on. Most of these words are invented by you. You are
not allowed to use words that do not at least have one letter at
the beginning. If the Pascal compiler sees a digit at the
beginning of a word it assumes that it is a number. For example,
317 is taken as a number. This means that words like 3RDPAGE are
illegal and will not be accepted by the Pascal compiler.

Before we leave characters we should perhaps list them. A
character is a letter, or a digit, or a special character. The
letters are

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghi jklmnopqrstuvwxyz

In this book we will use capital letters only in our programs.
In general, lower case letters may be used instead of upper case
letters. Matching upper and lower case letters are equivalent.

The digits are

0123456789

The special characters are

: + - */ ()-,

Numbers 21

b blank

Pairs of special characters are often used as special symbols in
the language. For example, each of the following pairs has a
fixed meaning

Various other special characters are often available on different
computer systems.

NUMBERS

Computers can do arithmetic calculations and they can do them
extremely rapidly. When you learned arithmetic you first learned
to handle numbers that are whole numbers, or integers. You
learned that 5+6-11 and 2x3-6. In Pascal numbers like 2, 3, 512,
809, and 46281 are called integer constants. Any string of
digits is an integer constant. You will remember that we will be
storing numbers in the computer and representing them as a string
of bits in some coded representation. The largest integer we can
represent will be limited by the length of the string of bits
that are in a word in our computer. Word lengths vary from one
computer to another and different Pascal compilers have different
maximum lengths for the digit strings that represent integer
numbers. You will be safe in expecting at least four decimal
digits to be within the maximum.

If you have integers requiring longer digit strings, for
instance the population of the world, you must use the other form
of numbers which is the real form.

If you have a large number like

635,642,000

you can write it as

6.35642x10®

Perhaps you recognize this as what is called scientific notation.
In Pascal the form of a real constant such as our example is

6.35642E8

The first part is called the fraction part, the second part the
exponent. The exponent part is written using the letter E
followed by the power of 10 that is to multiply the fraction
part. Maybe you learned this notation before in a science course
where very big numbers, like the mass of the moon, often occur.
Real notation is also used for numbers that are not integers.
These are either fractions or mixed numbers. We write either of
these in decimal notation where a point called the decimal point

22 PS/1: Programs that Calculate and Output

separates the integer from the fraction part. Examples of
fractions are

.5 .0075 .0000023

Mixed numbers are

5.27 889.6 6.0216

When we write fractions or mixed numbers in exponent notation we
usually standardize the form by putting the first non-zero digit
followed by a decimal point then the remaining digits. Then the
power of 10 is computed to make it right. The fraction .0000023
is written as 2.3x10 . In Pascal this then is 2.3E-6. It could
also be written as 0.23E-5, or 23.0E-7, or even as 23E-7.

An integer constant must not have a decimal point. A real
constant can be written either as a mixed number with at least
one digit to the left of the decimal point and one digit to the
right, e.g. 0.02, or in the exponent form. In the exponent form
it usually has a decimal point (with exceptions like the example
23E-7) and must have an exponent part. There must be digits on
both sides of the decimal point. The exponent part is the letter
E followed by an optional plus or minus sign followed by one or
more digits.

CHARACTER STRINGS

We have said that computers can handle both numbers and
strings of characters. We have seen that there are two forms for
numbers, integers and reals.

A character string can consist of any of the characters that
we have specified; letters, digits and special characters. Very
often, when printing the results of a computer calculation, we
want the results labeled. What we want is to print a string of
characters on the page. In the statement that specifies what we
want the computer to print, we include the actual string that we
want printed enclosed in single quotation marks. These strings
enclosed in quotation marks are called literals or character
string constants.

Examples of literals are

'BILL JONES', 'BALANCE IN ACCOUNT', 'X-'

If the literal you want to use contains a quotation mark or an
apostrophe, which is the same character, then you must put two
quotes rather than a single quote. For example, the literal
corresponding to the short form of 'CANNOT' is 'CAN''T'.

Expressions 23

EXPRESSIONS

One of the important concepts we have in Pascal is that of an
expression. The way that we explain what a word like expression
means is basically to give examples and then generalize these
examples.

First of all 32, 5, 6.1E2 and 58.1E6 are all expressions. So
the general statement is that integer constants and real
constants are expressions. So are literals like

'THIS IS AN EXPRESSION'

Any expression may be enclosed in parentheses and still be an
expression. For example (32) and (6.1E2) are also expressions.
The expressions that are integer or real constants can be
combined into compound expressions using the signs of arithmetic
for adding, subtracting, multiplying, and dividing. These
expressions are called arithmetic expressions. We use the
standard signs for adding and subtracting, namely the plus and
minus. For multiplication we use the asterisk (♦) because there
is no times sign. For division we use the slant or slash symbol
(/). Examples of arithmetic expressions are

2+3, 5.2E1«7.8E5, 6E0/2E0, 10-15

Integer and real values may be combined in a single expression,
and when they are the result is a real value. For example,
2 + 3.0E1 has the value 3.2E1.

If two numbers are to be divided using the slant operator,
the result will be a real value even if both numbers are
integers. For example, 6/2 gives the real result

3 . OEO

Two integers may be divided to produce an integer value using
the operator DIV. For example, 5 DIV 2 would give the integer 2.
The result is truncated. If you want to find the remainder in an
integer division, use the operator MOD. The result of 5 MOD 2 is
the integer 1, the remainder when 5 is divided by 2.

Here is a very complicated arithmetic expression

2*5+8-3*5/2+6

In evaluating this you have to know what to do first because you
really can only add, subtract, multiply or divide numbers two at
a time. The rule is to do the multiplications and divisions
first, then the additions and subtractions. Also you start at
the left-hand side of the expression and work to the right. We
are using here rules of precedence, that the operations multiply
and divide have precedence over add and subtract. Parentheses

24 PS/1: Programs that Calculate and Output

can be used to guide the sequence of evaluation. For example,
you write 3*(5+8) instead of 3*5+8 if you want the addition to
take place before the multiplication. Expressions in parentheses

take precedence.

EXAMPLES OF ARITHMETIC EXPRESSIONS

The following examples illustrate the rules for performing

arithmetic in the Pascal programming language.

72+16

8*5 + 7

2+10*4

Value is 88.

Value is 47. Note that * means multiply.

Value is 42. Note that multiplication is done before

addition.

(2+10)*4 Value is 48. The parentheses cause the addition to
be done before the multiplication.

1/3

72E0+16E0

This division will produce the real value
3.33333E-01. We can use integers and real values
with / and we always get a real value as the result.

Value is 88E0, which can be written in other forms
such as 8.8E1 and 8.80000E+01.

(9.83E0+16.82E0)/2.935E0

This expression is equivalent to the following
9.83+1 6.82

2.935
Real numbers may be written in the exponent
form or as mixed numbers. The parentheses were
used so the division would apply to the sum
of 9.83E0 and 16.82E0 (and not just to 16.82E0).

17 DIV 5 Value is 3. Note that only the integer part of the
quotient is given. DIV accepts only integers (not
real values) and gives an integer result.

17 MOD 5 Value is 2. This is the remainder when 17 is
divided by 5. MOD accepts only integers (not
real values) and gives an integer result.

PRINTING

Our main purpose in subset number one is to introduce you to
Pascal and to get you to write your first program. The program
is not going to do very much but it has to do something so that

Prin ting 25

you can see that it is working. The most it can do is to print
numbers or character strings on the printer (or output them on
the CRT display). Then you can see that some action is taking
place. When we mention a print line it is the same thing as a
line on a CRT display.

The statement that we will use in the program is like this

WRITELN (3, 5.1E1, 'BILL')?

Printing produced by the WRITELN statement is placed in
successive fields across the print line. The print line has
spaces for a certain number of characters. The items that are in
parentheses after the WRITELN are placed one to a field going
from left to right and then a new line is started,
printed, without the quotation marks, in a field the
the length of the literal. The size of fields
integers and real numbers varies from one Pascal
another. We will assume a compiler in which integers are printed
right-justified in a field of width 10 character positions and
real numbers are printed, in the exponent form, in a field of
width 14 character positions. For example, the number -378.52
would be printed as

Literals are
same size as
reserved for
compiler to

b-3.785200E+02

One digit always appears to the left of the
indicates that one blank character position
sign. A blank will not precede an integer
character positions reserved for it.

decimal point. The b
is to the left of the
if it takes up all 10

Since literals are printed in fields whose size is the same
as the length of the literal, a literal should begin with a blank
so that a space will separate it from other items that are
printed.

A blank line can be left by using

WRITELN(' ')?

since here
statement

the literal consists only of a blank. Actually the

WRITELN;

will produce the same result.

Expressions other than integer and real constants and
literals may also be placed in a WRITELN statement. The
statement

WRITELN(2+3, 4/2);

will result in a 5 being printed in the first field and
2.000000E+00 in the second. An interesting statement might be

26 PS/1: Programs that Calculate and Output

WRITELN(' 2 + 3- ' ,2 + 3) ;

it would print

2 + 3- 5

There would be 9 spaces between the equal sign and the 5 in the
actual printing. Note that the quotes around the literal are not

printed.

In all the examples of a WRITELN statement we have shown a
semicolon at the end. This is necessary to separate it from the
next statement in the program but is not used if the statement
happens to be the last of a list of statements.

If you do not want
statement you use WRITE
statements

to finish a printed line in an output
instead of WRITELN. The list of

WRITE(3) ;
WRITE(5. 1E1) ;
WRITELN(' BILL');

accomplishes exactly the same result as the single statement

WRITELN(3,5.1E1,' BILL');

The WRITE statement is like WRITELN except it does not cause a
new line to be started after its items are printed.

FORMATTING AND PRINTING

You can control the spacing of the printing precisely by
putting formatting numbers into a WRITE or WRITELN statement.
Suppose you bought 13 fattening chocolates, weighing together 0.6
kilograms at $6.87 per kilogram. You could calculate and print

the cost by

WRITE(' I BOUGHT', 13, 'GOODIES FOR', 0.6*6.87, 'DOLLARS')

This prints the following

I BOUGHT 13GOODIES FOR 4.12200E+00DOLLARS

The spacing is very poor. And the form of the REAL number
unfortunately has an exponent.

We can fix these problems this way

WRITE(' I BOUGHT', 13:3, 'GOODIES FOR';12, 0.6*6.87:5:2,' DOLLARS

Now the spacing and form of REAL number is better:

The Program 27

I BOUGHT 13 GOODIES FOR 4.12 DOLLARS

In the WRITE statement, the 3 after the 13 means print the 13 in
a field of 3 characters, instead of the default field size of 10.
The 12 following 'GOODIES FOR' means to use a field width of 12.
Since 'GOODIES FOR' has only 11 characters, there is one more
blank added on the left, which separates it from the printed 13.
Following 0.6*6.87 is 5:2 which means print the answer in five
columns, using 2 digits to the right of the decimal point. The
blank before DOLLARS was inserted by inserting a blank in
'DOLLARS' to make ' DOLLARS', but we could just have well used
'DOLLARS':8.

The following methods of formatting can be used. Blanks are
used to pad on the left to the given width.

1iteral:width Print the literal string in width columns

integer valuetwidth Print the integer value in width columns

real value:width:fractional digits
Print the REAL value in width columns with
"fractional digits" to the right of the decimal point
without the exponent part

real value:width Print the REAL value in width columns with
the exponent part.

A new page of printing can be started by placing the statement

PAGE

in the program.

THE PROGRAM

Now that you know two statements that will give some action,
you must learn what is necessary to make a complete program.
Then you can try the computer for yourself. All programs begin
with a line like this

PROGRAM OPUS1 (INPUT,OUTPUT);

The name OPUS1 is one we made up to describe the very first
complete program. (OPUS is Latin for "work"). You must make up
an identifier you like yourself. It must start with a letter and
have no special characters. The rest of the first line is
rigidly specified for all Pascal programs that require only the
card reader and printer. It begins with the keyword PROGRAM and,
after the name OPUS1 that you have invented, the words INPUT and
OUTPUT separated by a comma and enclosed in parentheses. This
first line is terminated by a semicolon.

28 PS/1: Programs that Calculate and Output

Now comes the big moment for a complete program.

PROGRAM OPUSI (INPUT,OUTPUT);

BEGIN
WRITELN(' 2+3-',2+3)

END.

There it is, our opus number one, a
body of the program starts with the
with the keyword END followed by a
and END is a list of statements sep
our list consists of only one sta
it does not have a semicolon after

compl
keywo
per io

arated
tement
it.

ete Pascal prog
rd BEGIN and
d. In between

by semicolons
, the WRITELN s

ram. The
finishes

the BEGIN
Since

tatement,

But wait,
control cards .
printing can
you tell the c

one little
On one you

be returned
omputer what

thing
identify
to you,
compiler

is s
yours

and no
to us

t
e
t
e

i
1

11 needed, namely, two
f, so that the output
someone else, and also

CONTROL CARDS

In this book
(or control lines
with programs to
computer systems
are typed into
handle a program,
control cards,
examples.

we will show Pascal programs with control cards
). Many computer systems require control cards
know how to handle a particular program. Other

separate the control into command lines which
a typewriter terminal, to tell the system how to

If your system uses command lines instead of
you should just ignore the control cards in our

The beginning control card that
different installations. The one we use

is used is different in
is of the form

$JOB 'PAT HUME'

The $ sign is punched in column 1 of the card followed
immediately, starting in column 2, by the word JOB. Inside the
quotation marks you put your own name, which then appears on your
output exactly as you wrote it. Often control cards are
prepunched with things like $JOB on them and you must add your
own name. In our examples we will just use a $JOB card and you
can find out what is required by your own compiler.

When
the card,
indicates
statement
the first

you punch the cards for the
Column 1 is reserved for
control cards. You need

in column 2. Any number of
word or between words. Lat

how to
read.

indent the statements in your

program use columns 2-80 of
the special $ sign which
not start the punching of a
blanks can be left before

er on we will be showing you
program to make it easier to

There is another control card required at the end.
installation it has $DATA in the first five columns.

In our

Chapter 3 Summary 29

AN EXAMPLE PROGRAM

The following is a complete job for the computer. This job
illustrates the use of the WRITELN statement.

1 $JOB 'RIC HOLT'
2 PROGRAM ZIGZAG (INPUT,OUTPUT)?
3 BEGIN
4 WRITELN(' Z G' , 'Z G') ;
5 WRITELN(' I A', 'I A':5);
6 WRITELN(' GZ ','GZ':4)
7 END.
8 $DATA

The program causes the following pattern to be printed.

Z GZ G
I A I A

GZ GZ

As you can see, the top line of the pattern is printed by the
WRITELN statement numbered 4. This statement causes its first
literal, ' Z G', to be printed in the first field of the print
line and its second literal, again 'Z G', to be printed in the
second field of the print line. Note that the first character to
be printed in the line is a blank. Statements 5 and 6 cause the
printing of the second and third lines of the pattern. Line 6
could be replaced by the following two statements without
changing the printed pattern:

WRITE(' GZ ');
WRITELN('GZ':4)

The two statements are equivalent to statement 6 because the
first one does not end the line.

CHAPTER 3 SUMMARY

In this chapter, we explained how to write very simple
computer programs. These programs are written in a small subset
of the Pascal language which is called PS/1. The following
important terms were presented.

Character - is a letter (ABC...Z), digit (012...9) or special
character etc.

Integer constant - is an integer (whole number) such as 78 and
2931. There may be a minus sign in front of the integer. A
integer constant should not be preceded by a dollar sign and
must not contain commas or a decimal point. The following
should not be used: $25 25,311.

30 PS/1: Programs that Calculate and Output

Real constant
3.14159x10° or
exponent form
exponent part
consists of a
to the left of

is a number such as 3.14159E0 (equal to
simply 3.14159). A real constant in the
consists of a fraction (3.14159) and an

EO). A real constant in the mixed number form
decimal point and must have at least one digit
it and at least one on the right.

Literal (or character
characters enclosed

string constant)
in quotes, such as

- is a sequence of
'WHY NOT?'.

Arithmetic expression - composed
collection of numbers combined
multiplication, division and
MOD). Parentheses may enclose

of either a single number or a
using addition, subtraction,
modulo (+, -, *, /, DIV and

parts of the expression.

Rul es of precedence - specify
to compute the value
Parenthesized expressions
from left to right, * and

the order for applying +
of an arithmetic
are evaluated first.

/ are applied first and

,-, * and /
expression.
Proceeding

then + and

WRITE - means "print". The WRITE statement prepares expressions
(literals or arithmetic expressions) for printing. A line is
not actually completed until a WRITELN is executed.

WRITE - integers, real values and string literals such as -24,
2.7E3 and 'HELLO' are printed using a statement of the form

WRITE(list of expressions separated by commas)

The line is not actually written until a WRITELN is executed.
The values are printed on paper or written to another device
such as a computer typewriter terminal.

WRITELN - this is similar
line so the next line
of values is optional

to WRITE but also completes the current
can be started. The parenthesized list
for WRITELN.

Field - WRITE and WRITELN
fields across a line,
given a field of 10
columns and a literal
varies>from compiler

cause values to be written
We will assume that an

print columns, a real value
is given its actual width

to compiler.

(printed) in
integer is
is given 14

, but this

Formatted writing - the width of a field
in a WRITE or WRITELN statement. For

can be given explicitly
example

-15:5
'FRED':7
4E1:5:1

produces
produces
produces

bb- 1 5
bbbFRED
b40.0

where b stands for blank.

Carriage control characters - in some computer systems the first
character of each line is used for controlling the printer's

Chap ter 3 Exeraises 31

carriage, for example, to make it double-space or skip to a
new page. In examples in this book we try to print a blank
character for carriage control at the beginning of each line
because that works on all computer systems, but you may find
this blank is not needed at your computer system.

Output (or printout) - printing, or display on a cathode ray tube
screen, which the computer does at your request. The WRITELN
statement produces output from the computer.

CHAPTER 3 EXERCISES

1. What will the following program cause the computer to print?

PROGRAM LETTER (INPUT,OUTPUT);
BEGIN

WRITELN(' XI ♦ ')
WRITELN(' XI XI XI XI ')
WRITELN(' XI XI XI ’)
WRITELN(' XI XI ')

END.

Can you rearrange the lines in this program to print a different
letter?

«

2. Write programs to print the following:

SEESEE YOU YOU PEAPEAPEA
SEE SEE YOU YOU PEA PEA
SEE YOU YOU PEA PEA
SEE YOU YOU PEAPEAPEA
SEE YOU YOU PEA
SEE YOU YOU PEA
SEE SEE YOU YOU PEA

SEESEE YOUYOUYOU PEA

(b)

T
TR M SQUARE
TRI A 0 Q R A
TRIA I N U A R M
TRIAN DIAMOND A U Y I
TRIANG I N R Q PYRAMID
TRIANGL A 0 ERAUQS
TRIANGLE M

32 PS/1: Programs that Calculate and Output

(C)

(d)

T T
I I
C C

TICTACTOE
A A
C C

TICTACTOE
0 0

E E

PLUS
PLUS

PLUSPLUSPLUS
PLUSPLUSPLUS

PLUS
PLUS

H STAIR CH EC KE RS

0 P S CH EC KE RS

S T CH EC KE RS

C E CH EC KE RS

0 T P CH EC KE RS

C STAIR CH EC KE RS

H S CH EC KE RS

T CH EC KE RS

E
P

3. What do the following cause the computer to print?

(a) WRITELN(2,' PLUS' , 3 , ' IS',2 + 3);
(b) WRITELN(' 23424+19872+36218-',

23424+ 1 9872 + 362 1 8) ;
(c) WRITELN(' 2 FORMULAS2+3*5,(2+3)*5);
(d) WRITELN(' SUBTRACTION',20- 1 0-5,20-(1 0-5)) ;

4. Write statements to calculate and print the following:

(a) The sum of 52181 and 10032.
(b) 9213 take away 7918.
(c) The sum of 9213, 487, 921, 2013 and 514.
(d) The product of 21 times the sum of 816, 5 and 203.
(c) 343 plus 916 all multiplied by 82.
(f) 3.14159 (pi) times 8.94 divided by 2. ^
(g) 3.14159 times the square of 8.94 (Note: X can be written

as X*X).

Chapter 4
PS/2: VARIABLES, CONSTANTS,
AND ASSIGNMENTS

In this
information
calculations
answers out.
understandabl
choice of wor
add to your
subset is the

subset you will learn how
into the computer, how to

on the numbers you read in,
You will learn, as well, how to

e to others (as well as to
ds that you can make up and by c

program. The principal cone
idea of a variable.

to rea
perform
and how
make yo

yourself
omments
ept to 1

d numerical
arithmetic

to print the
ur programs
) by careful
that you can
earn in this

VARIABLES

We have said that a computer has a memory and that in the
memory there are locations where information can be stored. Each
location has its own unique address. In a high-level language
like Pascal we do not ever refer to an actual machine address.
Instead we use a name to identify a particular location. It is
like referring to a house by the name of the owner rather than by
its street address. We use the word variable to stand for the
memory location. It is named by an identifier.

The identifier for a variable must begin with a letter and
contain no blanks or special characters. If you think of the
variable as the store location and its name as the identifier
then you will realize that the value of the variable will be the
actual information that is stored in the memory location.
Locations are arranged to hold only one type of information or
data. We speak of the data type of a variable. A variable may
hold integers, in which case we say it is an integer variable.
It could also be a real variable or a character variable. If a
variable is an integer variable its value can be any integer.
The value may be changed from time to time in the program but its

33

34 PS/2: Variables, Constants, and Assignments

type can never change; once an integer variable, always an
integer variable.

Examples of variable identifiers are

ACCTNO, TAX, TOTAL, MARK

They are similar to the identifier we used to name a program.

It is very important to choose identifiers that relate to the
kind of information that is stored in the corresponding
locations. Well-chosen identifiers make a program easier to
understand.

DECLARATIONS

We must make the words we want to use as variable identifiers
known to the compiler and associate them with memory locations
suitable for the particular data type they will hold. This is
accomplished by means of "declarations" that are placed in the
program immediately following the PROGRAM heading.

We will not, at the moment, show how character variables can
be declared but look only at integer and real variables. To
declare that SUM is to be an integer variable we write

VAR SUM: INTEGER;

The identifier is after the keyword VAR and followed by a colon
and the keyword INTEGER, then a semicolon. This establishes SUM
as having the type INTEGER. To declare DISTANCE to be a real
variable use

VAR DISTANCE: REAL;

If a number of integer variables are required they are all listed
after the VAR separated by commas, for example

VAR SUM,MARK,NUMBER: INTEGER;

Both integer and real variables are put into a single declaration
as in the following

VAR SUM: INTEGER;
DISTANCE,SPEED: REAL;

The keyword VAR can appear only once. Putting declarations in a
program is like phoning ahead for hotel reservations; when you
need it, the space is there with the right name on it. Also the
compiler can substitute the actual machine address whenever it
encounters a variable in the program. It does this by keeping a
directory showing variable identifiers and corresponding memory
locations. This directory is set up as the declarations are read

A ssignmen t Sta temen ts 35

by the compiler. In some Pascal compilers only the first eight
characters of a variable identifier are recorded in the directory
so no two variables should have identifiers which are identical
in the first eight characters.

You should not use as variable identifiers any of the words
that are Pascal keywords. These are PROGRAM, VAR, BEGIN, END,
and others we have not yet encountered.

ASSIGNMENT STATEMENTS

In addition to declarations, in this chapter you will be
learning two types of Pascal statements that cause things to
happen as the program is executed. We say that they are
executable statements. The WRITELN statement is an executable
statement; it causes printing to take place. One of the two new
executable types we will have is the statement that reads cards,
the READ statement, but first we will look at the assignment
statement.

There are no keywords in an assignment statement but it has a
very definite form. The form is

identifier expression;

There is a colon followed by an equal sign and on the left of
this is a single word, a variable identifier. This identifier
must have been declared to be either integer or real. On the
right hand of the colon and equal signs there is an expression.
We have looked at expressions that contained integer or real
constants; now expressions can also contain integer or real
variable identifiers. We have expressions like

5+10/3E0 (8+9)*7

but now we can have expressions like

SUM+1 total/1.00E2 SUM-MARK

We will not use variable identifiers in the expression of an
assignment statement to begin with but instead use a simple
expression, an integer constant. For example,

AGE:-5;

is an assignment statement. It causes the number 5 to be stored
in the memory location called AGE. If AGE appeared in the
declaration

VAR AGE: INTEGER;

then the number is stored as an integer and would be output by

36 PS/2: Variables, Constants, and Assignments

WRITELN(AGE);

as 5. If, on the other hand, it were declared REAL it would be
stored and printed as 5 . OOOOOOE + 00.

So far the expression on the right-hand
assignment has just been an integer constant, but
more complicated expressions.

side of the
we can have

AGE:- 1 979- 1 966;

Here we are subtracting the year of birth,
1979 to get the age in 1979. This instruction
value 13 to the variable AGE. We could get
follows

966, from the year
would assign the
the same result as

BIRTHYEAR:-1 966 ?
THISYEAR:-1979;
AGE;-THISYEAR - BIRTHYEAR;

Here we have
which are given
an expression
statement. We c

two addit
values in
on the r
ould have

ional variables BIRTHYEAR and THISYEAR
assignment statements and then used in
ight-hand side of another assignment
another statement

NEXTAGE:-AGE+1;

which would give the age the following year to the variable
NEXTAGE. Remember, if we use identifiers in a program they must
all appear in declarations. We would need the declaration

VAR AGE,BIRTHYEAR,THISYEAR,NEXTAGE; INTEGER;

A variable may be assigned values over and over during a program.
For example, we might have

SUM:-2+3;
WRITELN(SUM);
SUM:-3+4;
WRITELN(SUM);

and so on. Now we come to perhaps the most confusing type of
assignment statement. Suppose in a program you were malting
calculations year by year and needed to keep a variable AGE that
held the value of the current age for the calculation. We might
change the value at the end of the year by the assignment:

AGE:-AGE+1;

Now you can see that the assignment statement is certainly
not an equation, or this would be nonsense. What happens when
this statement is executed is that the value stored in the
variable AGE is added to the integer 1 and the result of the
addition stored back in the same location.

Tracing Execution 37

In machine language, if the memory location of AGE is 336 and
if there is a constant 1 stored in location 512, then the Pascal
assignment statement

AGE t-AGE+1 ;

could be translated as

LOAD 336
ADD 512
STORE 336

TRACING EXECUTION

We have seen that variables are associated with locations in the
memory of the computer. We can assign values to variables and,
during a program, we can change the values as often as we want.
The values can vary and that is why the locations are called
variables. The location stays the same but the value can change.

Sometimes it is helpful, when getting used to writing
programs, to keep track of values stored in the memory locations
corresponding to each variable. This can help us to understand
the effect of each statement. Some statements change a value;
others do not. We call this tracing the execution of
instructions.

We do not need to know the numerical, or machine address of
the locations. As far as we are concerned the identifier is the
address of the variable. For example, if before execution of

AGE;-AGE+1;

the value stored in the variable AGE was 13 then, after
execution, the value stored in the variable AGE would be 14.

We will trace now a slightly more complicated program by
writing the values of all the variables involved after each
instruction is executed. Here we will use some meaningless names
like X,Y, and Z because the program has no particular meaning.
We just want to learn to trace execution. We will write the
tracing on the right-hand side of the page and the program on the
left. The labels over the right-hand side give the names of the
locations; their values are listed under the names, opposite each
instruction. When the value of a particular variable has not yet
been assigned we will write a dash.

38 PS/2: Variables, Constants, and Assignments

LINE X Y Z

1 PROGRAM TRACE (INPUT,OUTPUT);

2 VAR X,Y,Z: INTEGER; - - -

3 BEGIN - - -

4 X: -5 ; 5 - -

5 Y:-7 ; 5 7 -

6 Z:-X+Y; 5 7 12

7 X:-X+5; 10 7 12

8 X: -Z ; 12 7 1 2

9 Y: -Z ; 1 2 12 1 2

1 0 X:-X+Y+Z; 36 1 2 1 2

1 1 Y;-Y*Z; 36 144 1 2

12 Z:-(X+Y)DIV 12; 36 144 1 5

1 3 X:-X MOD 5; 1 144 1 5

1 4 WRITELN(X,Y,Z) 1 144 1 5

1 5 END . 1 144 1 5

The lines of the program are numbered so that we can make

reference to them. You will have found that the computer numbers

the lines in your program so that it can refer to errors in

specific lines.

First notice that the locations X,Y, and Z do not get
established until the declaration VAR. They have no values
assigned at this point. All is straightforward until line 7 when
X appears on both sides of the assignment statement. The values
shown at the right are, remember, the values after execution of
the statement on that line. In line 12 note that since a
division between two integers is to take place and the result
assigned to an integer variable that the operator DIV must be
used. When the division yields an integer the answer is exact
but if there is a remainder on division the fractional part of
the division is dropped. We say it is truncated. To get the
fractional part of the result in a division we must use the
operator / and store the answer in a REAL variable location. If
the remainder in an integer division is desired the MOD operator
can be used.

The output statement in line 14 is different from the output
statements in PS/1 because now we can include the names of
variables in the list. We have

WRITELN(X,Y,Z)

The machine can tell the difference between variable identifiers

and literals because identifiers have no quotes. There is no

possible confusion between numbers and identifiers because an

identifier may not begin with a digit. You can see now why

Pascal has this rule.

In this example we showed a division with truncation.

Sometimes we want to round off the results of a division, say in

Input of Data 39

determining costs to the nearest cent. If COST is the value in
cents of a 2-kilogram package of soap flakes then the cost of one
kilogram to the nearest cent COSTKG is produced by using the
function ROUND

COSTKG:-ROUND(COST/2);

The variable COSTKG has been declared to be integer so it will
accept only whole number values. If you do not want to round off
a REAL value but would rather truncate the fractional part, you
should use the function TRUNC as in

COSTKG:-TRUNC(COST/2)?

Since COST is an INTEGER variable, for this example we can get
truncation more easily using COST DIV 2 instead of TRUNC(COST/2).

INPUT OF DATA

not
Now we will learn
learn this at the

how to read data into the computer. We did
same time as we learned to print data

because the idea of a variable is essential to input,
essential to output because we can have numbers and
that is, integer and real constants and constant
strings. If we use

It is not
literals,
character

READ(X,Y,Z);

we will read three numbers off a card and store them in
variables X, Y, and Z. The card with the three numbers
a data card and is placed in the card deck immediately
the $DATA control card. We need to have a $DATA control card
whether or not there are any data cards. On the data card, the
numbers need not be arranged in any set fields, but must be
separated from each other by
sample program, including control
in and prints it out.

ca rd deck
to ha ve a
ta ca rds .
any set
at least
ca rd s , th

the three
is called
following

one blank. Here is a
it reads information

$JOB 'PAT HUME'
PROGRAM INOUT (INPUT,OUTPUT);

VAR X,Y,Z: INTEGER;
BEGIN

READ(X,Y);
Z:-X+Y;
WRITELN(Z,Y,X)

END.
$DATA

5 7

The printed output for this program would appear in the first
three fields and would be

12 7 5

40 PS/2: Variables, Constants, and Assignments

On input, the first number on the data card, namely 5, is
associated with the first variable X and stored in that location.

The number 7 is stored in location Y.

When punching real numbers for input, you do not have to put
any more significant figures than necessary in either the
fraction or exponent; you need not punch

2.OOOOOOE+00

You can have only 2.0E0 or 2E0. If the exponent is zero, you may
omit it completely. Thus numbers like

35.8 3.14159 0.025

are all acceptable as real numbers.

CONVERSION BETWEEN INTEGER AND REAL

Conversions from integer to real form will occur
automatically whenever the variable that is to hold the number is
of type real. If a data item is on a card as an integer and is

a location defined by a variable that has been declared
then it will be converted to real. However it is not

to assign a real value, either in an assignment
or by a read, to an integer variable. The

read into
as REAL,
permitted
statement
must first be transformed into an integer using either

or TRUNC function.

real value
the ROUND

$JOB 'RIC HOLT'
PROGRAM CONVERT (INPUT,OUTPUT);

VAR X,Y: INTEGER;
Z: REAL;

BEGIN
READ(X,Y,Z);
WRITELN(X,Y,Z);
READ(X,Y,Z);
WRITELN(X,Y,Z)

END .
$DATA

22 36 25 2 181 5E4

The output for this program will have two lines with the printing

22
2

36 2.500000E+01
181 5.000000E+04

Within a program it is often necessary to convert from a real
value to an integer. For example, suppose that AVERAGEMARK is a
real variable holding the average mark in a term examination.
You would like the average to the nearest mark. Declare another
variable AVERAGE as integer and write in the program

An Example Job 41

AVERAGE ROUND(AVERAGEMARK);

AVERAGE will then be an integer, the rounded average mark

COMMENTS

ed progr amming i s tha
yourself and by 0

what is being sto red

One of
programs be

' IS an
excellent way to make programs readable. We have shown several
programs with just X,Y, and Z as variable names. This is because
these are meant to show you what happens in assignment statements
and READ and WRITELN statements and are not about real
applications. It is not advisable to use such meaningless names.
We want your programs to look more like English than like algebra
when you are finished.

One other thing tha
understandable is to include
program. We have been provi
in the accompanying text but
the program. To accompli
inside a pair of symbols tha
the comment is not mistaken
you use are (* to begin and

(* THIS IS A COMMENT *)

t you can do to ma
comments in English al

ding comments to some o
you can write comment

sh this, simply enclos
t will act like bracket
for a program statement
*) to end the comment.

ke a program
ong with the
f our examples
s right into
e the comments
s; in that way
. The symbols
For example.

could be placed anywhere in the program where blanks can occur.
To be sensible it is best to have
lines or on separate lines

comments occur at the ends of

When the special characters i and
used to enclose comments rather than (*

are available, they are
and *). For example.

THIS IS A COMMENT

Comments must not
or be put in the data,
in our examples.

have *) (or 1 as the
From now on we will

case may be) in them,
be including comments

AN EXAMPLE JOB

We now give a job (control cards, program and data values)
which illustrates the use of variables, assignment statements,
READ statements, and comments. The program reads in the length,
width and height of a box (as given in inches) and then prints
the area of the base of the box (in square centimeters) and the
volume of the box (in cubic centimeters). Lines 1 and 19 are
control cards, lines 2-18 are the program and line 20 gives the
data .

42 PS/2: Variables, Constants, and Assignments

$JOB 'MARIE GUINDON'
PROGRAM CONVERT(INPUT,OUTPUT);

(♦ READ BOX LENGTH, WIDTH AND HEIGHT IN INCHES *)
(* THEN CONVERT TO CENTIMETERS AND CALCULATE *)
(* THE BOX'S BASE AREA AND VOLUME. *)
CONST CMPERINCH-2.54;
VAR LENGTH,WIDTH,HEIGHT,AREA,VOLUME: REAL;
BEGIN

READ(LENGTH,WIDTH);
LENGTH:-CMPERINCH*LENGTH;
WIDTH:-CMPERINCH*WIDTH;
AREA: -LENGTH’fWIDTH ;
WRITELN(' AREA- ',AREA);
READ(HEIGHT);
HEIGHT:-CMPERINCH*HEIGHT;
VOLUME:-HEIGHT*AREA;
WRITELN(' VOLUME-',VOLUME)

END.
$DATA

2.6 1.2 6.92

This program will print the following

AREA- 2.01290E+01
VOLUME- 3.53803E+02

where the area is in square centimeters and the volume is in
cubic centimeters. The area and volume printed depend on the
three values on the data cards; the data values 2.6, 1.2 and 6.92
could be replaced by the dimensions of a different box.

Line 2 marks the beginning of the program; it causes no
action on the part of the computer. Lines 3, 4 and 5 are
intended for you, the reader of the program, and are ignored by
the computer.

Line 6 of the program is a definition of a constant. The
constant ‘identified by the name CMPERINCH is given the value
2.54. Constants differ from variables in that they maintain the
same value throughout the program's execution. Definitions of
constants must precede the declaration (VAR) of variables. Line
7 sets up memory locations for variables called LENGTH, WIDTH,
HEIGHT, AREA, and VOLUME. These variables have the REAL type,
instead of the INTEGER type, because they have non-integer values
(such as 2.6). Line 9 causes the data values 2.6 and 1.2 to be
read into variables LENGTH and WIDTH.

Line 10 takes the value 2.6E0 from the LENGTH variable,
multiplies it by the constant CMPERINCH and then returns the
result to LENGTH. Line 11 is similar to line 10.

Line 12 takes the values in LENGTH and WIDTH, multiplies them
together, and places the result in AREA. Line 13 then prints:

1

2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
1 5
16
1 7
18
1 9
20

Labeling of Output 43

AREA- 2.01290E+01

As of line 13, the variables HEIGHT and VOLUME have not been
used. An attempt to print HEIGHT or VOLUME in line 13 would be
an error because those variables have not yet been given a value.

Since the READ statement of line 9 uses up the first two data
values, 2.6 and 1.2, the READ statement of line 14 reads the
value 6.92 into HEIGHT. The computer does not know that 6.92
represents the height of a box. It only knows that it is
instructed to read the next data value into the variable named
HEIGHT.

Line 15 converts to centimeters, line 16 computes the volume
and line 17 prints the volume. Notice that this statement has no
semicolon after it since it is the last in a list of statements
before END. As a matter of fact no real problem is created if
you do put a semicolon here since a null statement (that is, no
statement at all) is a legitimate statement in Pascal. You can
just assume that there is an invisible null statement after the
semicolon before END. We will not take advantage of this rather
wierd situation because there will be places where a semicolon
too many would cause an error condition. Line 18 is the end of
the program and tells the computer to stop working on this
program. Notice that END has a period after it.

This job would print the same thing if we made the following
changes.

(1) Replace line 9 by the two assignment statements:

LENGTH:-2.6;
WIDTH:-1.2;

(2) Replace line 14 by the assignment statement:

HEIGHT:-6.92 j

(3) Delete line 20, the data values.

These three changes result in a program which is given the
dimensions of the box by assignment statements rather than by
input statements (READ statements). The advantage of the
original program, which uses READ statements, is that the program
will work for a new box simply by replacing the data card, line
20 .

LABELING OF OUTPUT

Just as comments help to make a program more understandable,
output that is properly identified by labeling is self-

44 PS/2: Variables, Constants, and Assignments

explanatory. What you are trying to do is to prepare documents
that need no further explanation from you when you show your
computer printout to others.

The compiler lists your program, including comments, but the
output data should also be labeled so the reader is in no doubt
about what the numbers are, without reading the program. Very
often you present results without showing how you got them, that
is, you do not include the program.

There are two basic ways to label results. If different
values of the same set of variables are listed in columns on the
output, then a label can be placed at the top of each column.
For example, the output for comparing costs of boxes of soap
flakes might be

COST WEIGHT(KG) cost/kg
125 1 125
200 2 100
260 3 87

There is no reason to use exactly the same labels as the variable
names, since the literals printed at the top of the columns can
be longer and contain blanks. They are printed independently.
The program that produces this table might be

$JOB 'JOHN ZAHORJAN'
PROGRAM SOAP (INPUT,OUTPUT);

(♦COMPUTE AND TABULATE COST PER KG*)
VAR COST,WEIGHT,COSTKG: INTEGER;
BEGIN

(* PRINT HEADINGS OF TABLE *)
WRITELN(' COST WEIGHT(KG)',' COST/KG');

(* PROCESS DATA FOR FIRST BOX *)
READ(COST,WEIGHT);
COSTKG:-R0UND(C0ST/WEIGHT);
WRITELN(COST,WEIGHT,COSTKG);

(* PROCESS DATA FOR SECOND BOX *)
READ(COST,WEIGHT);
COSTKG:-ROUND(COST/WEIGHT);
WRITELN(COST,WEIGHT,COSTKG);

(* PROCESS DATA FOR THIRD BOX *)
READ(COST,WEIGHT);
COSTKG:-ROUND(COST/WEIGHT);
WRITELN(COST,WEIGHT,COSTKG)

END .

Program Testing 45

$DATA
125
200
260

1
2
3

You
headings

inserted,
line of

how the column
the table is

is WRITELN (not

can see how comments can be
are printed, ' and how each

calculated and printed. Each output statement __
WRITE) so each one causes a new line to be started after printing
the three numbers. In the program we have repeated three
statements, without change, one set of three for each box. If we
had 100 boxes, this would have been a little monotonous. When we
want to repeat statements we do not do it this way; a more
convenient way is possible with a new Pascal statement that will
cause this kind of repetition. But that comes in the next

subset, PS/3.

A second kind of output labeling was already used in the
previous example but can be illustrated by a program segment

COST:-5;
WRITELN('COST-',COST);

This would result in the printing

COST- 5

This method is easier when just a few numbers are being printed.

PROGRAM TESTING

It is easy to make mistakes in programming. The first thing
you should do to test a program is to read over your program
carefully to spot errors. It is valuable to trace the execution
yourself before you submit it to the computer. Your goal should
always be to produce programs that you know are correct without
testing, but this is not always possible. You could ask someone
else to read it too. If he cannot understand your program it may
show that your program is poorly written or has errors. Next you
put your program on cards and proofread your cards to see that
they match your intentions. Check that the control cards are
present. Next you submit your deck.

If you have made errors in your program that involve the form
of statements, the compiler spots these during compilation and
reports them on the output. It refers to an error of a certain
type in line so and so of the program. It has been careful to
give numbers to each line so that it can make these references.
Errors in form are called syntax errors. Examples of common

syntax errors are

1. leaving out the semicolon between statements

46 PS/2: Variables, Constants, and Assignments

2. forgetting the END with its period
3. misspelling a keyword

In a way, a syntax error is a good error since it is detected for
you by the computer. But it is frustrating to have to correct it
and resubmit the job. It wastes time. Some people say that
having syntax errors is a symptom of sloppy programming and a
sure indication that there are other errors.

When there are simple syntax errors, most compilers attempt
to repair them and go on. Their repairs are just guesses at what
you intended and some of the guesses are pretty wild. They
always give the programmer a warning if a repair has been
attempted. Some errors cannot be repaired and, as a result, no
execution takes place. Your printout has only the program
listing and error messages. Very sadl Back to the drawing board.
Be sure to proofread the entire listing of your program, looking
for unreported errors.

If there are no unrepairable syntax errors, execution can
take place right after compilation. This does not, however, mean
that all is well.

If answers are printed, they should be checked against hand
calculated answers. If they agree, it is possible that your
program is correct. If they disagree it is possible that your
hand calculations are incorrect or that your program has errors.
The errors now are usually of a kind called semantic errors. You
are asking for a calculation that you did not mean to ask for.
It has a different meaning from your intentions. For instance,
you are adding two numbers and you meant to subtract them.

To find semantic errors you must look at the program again
and try to trace what it must be doing rather than what you
thought it would do. To help in the tracing it is sometimes
necessary to insert additional WRITELN instructions between other
statements and print out the current value of variables that are
changing. In this way you can follow the machine's activity.
These extra WRITELN instructions can be removed after the errors
have been found.

Sometimes there is no output printing from the WRITELN
instructions that give the final results. This might happen in
many ways, for instance, if you ask in the READ statements for
more data items than you have on the data cards without testing
for the end of the file. The computer will tell you it reached
the END OF FILE so the error is spotted. It is important that
the data items match the variables in the READ statements, or
answers can be ridiculous.

Care must be taken about the INTEGER and REAL distinction
between numbers as the computer converts from integer to real
automatically and will not warn you if things are going wrong.

Common Errors in Programs 47

COMMON ERRORS IN PROGRAMS

When you try running a program on a computer, the computer
may detect errors in your program. As a result, error messages
will be printed. Since the computer does not understand the
purpose of your program, its error messages are limited to
describing the specific illegalities which it detects.
Unfortunately, the computer's error messages usually do not tell
you how to correct your program so that it will solve the problem
you have in mind.

In order to help you avoid such errors, we list some of the
errors which commonly occur in students' programs.

Missing semicolons - Do not forget to put semicolons between
statements and no semicolon after the last statement of a
list. No semicolon follows a list containing a single

statement.

Missing parentheses - Do not forget the parentheses required
around the list of items in a READ or WRITE statement.

Missing first line of program - Every Pascal program must have a
line of the form

PROGRAM identifier (INPUT,OUTPUT);

Missing END. at the end of the program.

Missing $DATA

Missing quotes, especially the last quote. Consider the
following erroneous statement:

WRITELN('INVOICE);

This statement is missing a
parenthesis. After printing
may try to repair the error
print

INVOICE);
rather than

INVOICE

quote between the
an error message,
by concluding that

E and the right
the compiler

you want it to

Uninitialized va
location, or
placed in
initialized,
assignment s
is made to us
statement or

riables - When a variable is decla
rail, is set aside, but no spec
the cell. That is, the cell
A variable must be given a v
:atement or a READ statement, bef
> the value of the variable
in an expression.

red, a memory
ial value is

is not yet
alue, via an
ore an attempt
in a WRITELN

Undeclared variables - Before a variable is used in a
(assignment, READ or WRITELN) the variable must be

statement
declared.

48 PS/2: Variables, Constants, and Assignments

The declaration of variables must precede all statements.
Definition of constants precedes the declaration of

variables.

Mistaking I for 1 - The chara cters I and 1 look simila

entirely different to the computer.

Mistaking 0 for 0 The characters 0(oh) and 0(

similar, but are entirely different to the computer

r , but

zero)

are

look

CHAPTER 4 SUMMARY

This chapter introduced variables, as they are used in
programming languages. Essentially, a variable is a memory
location, or cell, which can hold a value. Suppose X is the name
of a variable; then X denotes a cell. If X is a variable having
the INTEGER type, then the cell for X can hold an integer value
such as 9, 291, 0 or -11.

The following important terms were discussed in this chapter.

Identifier - can be used as the name of a variable or constant.
An identifier must begin with a letter; this letter can be
followed by additional letters or digits. The following are
examples of identifiers: X, I, WIDTH, INCOMETAX and A1. In
many Pascal compilers only the first 8 characters of an
identifier are used, so that no two identifiers in a program
should have the same first 8 characters.

Type - Each variable has a type; in this chapter we introduced
the INTEGER and REAL types. The type of a variable is
determined by its declaration.

Variable declaration - establishes variables for use in a
program. For example, the declaration

VAR I: INTEGER;

creates a variable called I which can be given integer
values.

Constant definition - establishes named constants for use in a
program. For example, the definition

CONST PI-3. 14 159;
CONVERT-2.54;

creates named constants PI and
constants occurs immediately after
is followed by the declaration of
that precedes any WRITELN, READ or

CONVERT. Definition of
the PROGRAM heading; this
variables before the BEGIN
assignment statements.

Chapter 4 Summary 49

VAR - the keyword instructing the computer to create variables. A
declaration can be of the form;

VAR list of identifiers separated by commas: type;

The type must be INTEGER or REAL for the PS/2 subset. The
declaration can be extended for further variables, for
example:

VAR I; INTEGER;
X,Y: REAL;
J,K: INTEGER;

We sometimes express the form of the declaration of variables
by writing

VAR variable!,variable! :type;
Ivariablel, variable 1 :type; !

where the curly brackets indicate that what is contained in
them can appear zero or more times.

Assignment - means a value is assigned to a variable. For
example, the following is an assignment statement which gives
the value 52 to the variable I:

I:*52 ;

Truncation - throwing away the fractional part of a number. When
a real number is to be assigned to a variable with the
INTEGER type, the variable can be given the truncated value
by using the TRUNC function. If X is real and Y integer

Y:-TRUNC(X);

will assign the integral part of the value of the real
variable X to the integer variable Y.

Rounding - changing a real number to the nearest integer. If X
is real and Y integer

Y:-ROUND(X);

assigns the value of X, rounded off, to the integer variable
Y.

Number conversion - changing an integer number to a real number
or vice versa. Conversion from real to integer requires
either truncation or rounding of the result. Integer values
are converted automatically to real when assigned to (or read
into) a real variable location.

Data (or input data) - values which a program can read. The data
values follow $DATA.

50 PS/2: Variables, Constants, and Assignments

READ - means "Read data." The READ statement reads data values
into a list of variables.

READ statement - this statement is of the form:

READ(list of variable names separated by commas);

Reading will automatically proceed to the next data card when
the values of one card have all been read.

Comments - information in a program which is intended to assist a
person reading the program. The following is a comment which
could appear in a Pascal program:

(* THIS PROGRAM PRINTS GAS BILLS *)

Comments do not affect the execution of a program.

Documentation - written explanation of a program. Comments are
used in a program to document its actions.

Keyword - a word, such as PROGRAM or BEGIN, which is an inherent
part of the programming language. Keywords must not be used
as identifiers.

Errors - improper parts of, or actions of, a program. For
example, the statement

WRITELN('HELLO';

has an error in that a right parenthesis is missing. If the
computer detects an error in your program, it will print an
"error message".

CHAPTER 4 EXERCISES

1. Suppose that I, J and K are variables with the integer type
and they presently have the values 5, 7 and 10. What will be
printed as a result of the following statements?

WRITELN(I,1+1,I+J,I+J*K);
K: -I+J;
WRITELN(K);
J:-J+1;
WRITELN(J);
I : -3*I + J;
WRITELN(I);

2. RADIUS, DIAMETER, CIRCUMFERENCE and AREA are REAL variables.
A value has been read into RADIUS via a READ statement. Write
statements which do each of the following.

(a) Give to DIAMETER the product of 2 and RADIUS.

Chapter 4 Exercises 51

(b) Give to CIRCUMFERENCE the product of pi (3.14159) and
DIAMETER.

(c) Give to AREA the product of pi and RADIUS squared.
(RADIUS squared can be written as RADIUS*RADIUS.)

(d) Print the values of RADIUS, DIAMETER, CIRCUMFERENCE
and AREA.

3. Suppose I is a variable with the INTEGER type. I has already
been given a value via an assignment statement. Write statements
to do the following.

(a) Without changing I, print out twice the value of I.
(b) Increase I by 1.
(c) Double the value of I.
(d) Decrease I by 5.

4. M, N and P are variables with the integer type. What will the
following statements cause the computer to print?

M: -43 ;
N: -2 1 1 ;
P: -M;
M: -N;
Nj -P ;
WRITELN(M,N)j

5. (a) What will be printed by the following job?

1 $JOB 'ANN MORLEY'
2 PROGRAM PAIRS(INPUT,OUTPUT);
3 VAR FIRST,SECOND: INTEGER;
4 BEGIN
5 READ(FIRST,SECOND);
6 WRITELN(FIRST+SECOND);
7 READ(FIRST,SECOND);
8 WRITELN(FIRST+SECOND)
9 END.

10 IDATA
1 1 22 247 -16
12 528

(b) Which lines of this job are control cards? Which are program
and which are input data?

52 PS/2: Variables, Constants, and Assignments

6. (a) What will be printed by the following job?

2
3
4
5
6
7
8
9

10
1 1
12
1 3

$JOB 'FRED LEE'
(* CALCULATE TERM MARK *)
PROGRAM COMBINE(INPUT,OUTPUT);

VAR GRADE 1 ,GRADE2: REAL;
MARK: INTEGER;

BEGIN
READ(GRADE 1 ,GRADE2) ;
MARK:-ROUND((GRADE 1+GRADE2)/2) ;
WRITELN(GRADE 1 ,GRADE2,MARK)

END .
$DATA

8 1.7
85.9

(b) Which lines of this job are control cards; which are program
and which are input data?

7. Trace the execution of the following program. That is, give
the values of the variables LENGTH, WIDTH, and ABOUT and give any
output after each line of the program.

$JOB 'JOE MURPHY'
PROGRAM AREA(INPUT,OUTPUT);

VAR SIZE,LENGTH,WIDTH: REAL;
ABOUT: INTEGER;

(♦ READ SIZES AND CONVERT FEET TO YARDS *)
BEGIN

READ(SIZE);
WIDTH:-SIZE/3;
READ(SIZE);
LENGTH:-SIZE/3;
ABOUT:-ROUND(WIDTH^LENGTH);
WRITELN(' LENGTH AND WIDTH ARE',LENGTH,WIDTH);
WRITELN(' AREA IS:',LENGTH*WIDTH,

' THIS IS ABOUT',ABOUT,' (SQUARE YARDS)')
END .

$DATA
9.60 15.9

8. Write a program which reads three values and prints their
average, rounded to the nearest whole number. For example, if
20, 16 and 25 follow the $DATA card then your program should
print 20. Make up your own data for your program.

9. Write a program which reads a weight given in pounds and then
prints out the weight in (1) pounds, (2) ounces, (3) kilograms
and (4) grams. Note: 16 ounces equal one pound, 2.2046 pounds
equal one kilogram and 1000 grams equal one kilogram. Use named
constants in your program.

Chapter 5

PS/3: CONTROL FLOW

In the first two subsets of Pascal we have learned to write
programs with statements that cause the computer to read cards
and assign values to variables, evaluate arithmetic expressions
and assign the values to variables, and print results with
labels. In all programs the statements were executed in seguence
until the END was reached, at which time the program was
terminated. In this subset we will learn two ways in which the
order of executing statements may be altered. One involves the
repetitious use of statements; the other involves alternate paths
in the flow of statements. The first is called a loop, the
second a branch. We speak of the flow of control since it is the
control unit of the computer that determines which statement is
to be executed next by the computer.

COUNTED LOOPS

The normal flow of control in a program is in a straight
line. So far, in the statements that are bracketed in the list
between the BEGIN and the END, one statement is executed after
another. We can, however, give a statement that will cause the
statement that follows it to be repeated. In the last chapter,
in the example where we were reading information about boxes of
soap flakes, we had to write the statements over and over to get
repetitions. A statement that will produce repetition is the
counted FOR loop. For our example we could have written

FOR I;-1 TO 3 DO
BEGIN

READ(COST,WEIGHT);
COSTKG:-ROUND(cost/weight);
WRITELN(COST,WEIGHT,COSTKG)

END;

53

54 PS/3: Control Flow

The three statements that we had to repeat three times are

prefaced by

FOR I:-1 TO 3 DO
BEGIN

and followed by END;

statements
statement.

The three
single compound
must be declared as
number of repetitions,
compound statement is
sent back to the FOR.
1, making it 2.
then, back we go
execution

bracketed by BEGIN and END act as a
The variable I is an index, which

an integer variable, and which counts the
First the index I is set to 1, then the

executed. After the execution, control is
At this time the index I is increased by

The compound statement is again executed and,
to the FOR. This time I becomes 3 and a third

of the compound statement in the FOR loop takes place.

When control returns to the FOR this time, I
the final value 3 so control goes out of
statement after the compound statement.

is found be equal to
the loop to the next

A counted or indexed FOR loop is used whenever we
exactly how many repetitions we want to take place. We do
need to start the count at 1. We could, for example, have

know
not

FOR COUNT:-12 TO 24 DO

Here we
going up
counted
write

have called the index COUNT and are starting
to, and to include, 24. In these statements
forward by 1. We can also count backwards by

at
we

1 .

2 and
have

If we

FOR COUNT:-10 DOWNTO 1 DO
statement

it will cause the "statement" to be executed with COUNT taking

the values 10, 9, 8, ..., 1.

The other kinds of loop statements are the WHILE...DO
statement and the REPEAT... UNTIL statement but we cannot
introduce them until we look at conditions. The WHILE...DO is a
loop statement that causes repetition as long as a certain
condition is true. The condition concerned is written at the
beginning of the loop after the word WHILE. The REPEAT...UNTIL
is a loop statement that causes repetition until a certain
condition is true. The condition is written at the end of the

loop after the word UNTIL.

CONDITIONS

There are
expressions and
The following

expressions in Pascal that are called
these have values that are either true
is a list of relational expressions

relational
or false,
with their

Boolean Variables 55

value written on the same line. The symbol > means is greater
than, < means is less than, the equal sign means is equal to, and
the sign O means is not equal to.

relational expression value

5"2+3 true
7>5 true
2<6 true
5 + 3<2 +1 false
6010 true
5>5 false
5>"5 true

You can see how these work. These are sometimes called Boolean
expressions after the logician George Boole.

There are compound conditions formed by taking two single
conditions and putting either the Boolean (logical) operator AND
or the Boolean operator OR between them. When conditions are
compounded in this way, each simple condition should have
parentheses around it. This is because Boolean operators have
higher precedence than relational operators.

With AND both
condition is false.

conditions must be true or else the compound
For example.

(8>7) AND (6<3)

is false since (6<3) is false. With OR, if either or both of the
single conditions is true, the compound condition is true. For
example, (8>7) OR (6<3) is true since (8>7) is true. It is
possible to have multiple compoundings. For example.

((8>7) AND (2-1+1)) AND ((6>7) OR (5>1))

is true. The parentheses here show the sequence of the
operations. There is a rule of precedence if there are no
parentheses, namely, the AND operator has higher precedence than
the OR operator. This means that AND operations are done
before OR operations,

A Boolean operator that requires only one condition is the
NOT operator. The condition

NOT(5>6)

is true since 5 is not greater than 6.

BOOLEAN VARIABLES

I f you
be typed by

want to assign a
a declaration as

Boolean value to a variable, it must
BOOLEAN. BOOLEAN is a variable type

56 PS/3: Control Flow

just like REAL and INTEGER. But a Boolean variable can only have
one of two values, namely TRUE or FALSE. Boolean variables can
not be read but can be assigned Boolean values, or printed. They
are printed in a 10 character field like integers. They cannot
be used in numeric expressions. For example, if you want a
Boolean variable SWITCH assigned the value true you must include

the declaration and the assignment.

VAR SWITCH: BOOLEAN;
SWITCH:-TRUE;

The variable SWITCH may be used in a condition.

CONDITIONAL LOOPS

We have introduced the notion of a condition; now we will
actually use it. One of the major uses of conditions is in the
conditional loop. There are two of these the REPEAT... UNTIL
condition and the WHILE condition DO loop. We will look first at

the WHILE...DO loop. The form of this loop is

WHILE condition DO
statement

The repetition of "statement
loop is to take place as long a
word WHILE is true. Once it
next statement after the loop,
statements in the body of
compound statement using BEGIN

" which is called the
s the condition stated
is false, the control
If you want to have a

a loop you must make
and END.

body of the
after the

goes to the
number of

them into a

So far we have discussed only conditions involving integer
constants. These are always true or false. The condition in the
WHILE loop cannot be like this, because if it were always true we
would loop forever and if always false we would not loop at all.
The condition must involve a variable whose value changes during

the looping.

In the following example a WHILE...DO
accomplish what the counted FOR loop did for

boxes.

loop is used to
the soap flakes

1 I : - 1 ;
2 WHILE I<-3 DO
3 BEGIN
4 READ(COST,WEIGHT);
5 COSTKG:-R0UND(C0ST/WEIGHT);
6 WRITELN(COST,WEIGHT,COSTKG);

7 I:-1+1
8 END;
9 WRITELN(I);

Reading Input 57

In statement 1 the value of the variable I appearing in the
condition is set initially to 1, then we enter the loop. This
stage is called initialization. In line 2 we begin the loop.
The condition after the WHILE is true since I is 1, which is less
than 3. Thus the compound statement starting with BEGIN and
going down to END is executed. This compound statement
constitutes the body of the loop. In the body, statement 7
alters the value of the variable appearing in the condition.
This means that it is changing each time around the loop. At the
end of the first execution of the loop it becomes 1+1-2. After
the compound statement has been executed, control returns to the
start of the loop. The condition is then examined and since it
is true (2<-3), the body is executed a second time. It will be
true also on the third time but on the fourth round, I will be 4
and (4<-3) is false. When I is printed by statement 9 it is 4.
This printing is not part of the original example, but was
included here to show you what happens to the index I.

The various phases of a WHILE...DO loop are

Phase 1. Initialization, especially of the variable in the
condition

Phase 2. Test condition and if true then go to the next
statement which is the body of the loop, if false go to
the statement following the body

Phase 3. Execute the statement that constitutes the body of
the loop which includes altering the variable in the
condition

Phase 4. P,eturn to phase 2.

Phase 1 is necessary to give the variable appearing in the
condition an initial value. Since the body of the loop must
alter the variable in the condition in addition to taking some
other action, it almost always is a compound statement.

Before we introduce the REPEAT... UNTIL loop we will compare
the use of the WHILE...DO conditional loop and the FOR...DO
counted loop.

READING INPUT

As an example of looping we will look at reading data from
cards and printing it out, assuming that each card produces one
line of printing. The only real problem will be to stop when you
reach the last card. There are two distinct ways of doing this.
One is to count the cards by hand, prepare a card with this count

58 PS/3: Control Flow

on it, and place it in front of the data cards. Then we use a
counted FOR loop to read them. The second method is to place a
card at the end of the data cards with a piece of data that is
impossible as a real entry. We call it a dummy card. Sometimes
it is called an end-of-file marker. In a later subset, PS/5, we
will see how the EOF end of file predeclared function can be used
to detect the last card when no end-of-file marker is supplied in

the data.

We will now examine the two methods in turn. Suppose, to
talk specifically, that each data card has on it a student number
and a grade received in an examination. To illustrate we will
have only three data cards, but you can see how it will work with

more.

Method 1. Counting the cards

$JOB 'GORDY PROCTOR'
PROGRAM MARKS 1 (INPUT,OUTPUT) ;

VAR STUDENTNUMBER,MARK,COUNT,I: INTEGER;

BEGIN
WRITELN(' STUDENT':10, 'MARK':10);
READ(COUNT);
FOR I:-1 TO COUNT DO

BEGIN
READ(STUDENTNUMBER,MARK);
WRITELN(STUDENTNUMBER,MARK)

END
END .

$DATA
3
1026 86
2051 90
3163 71

Notice that we took the trouble to label the output. Perhaps the
two ENDS, one after the other, seem strange. The first belongs
to the compound statement in the FOR loop, the second to the
BEGIN prefacing all statements. The machine can keep track of
these just as you can tell which right parenthesis goes with
which left one in this example:

(2+5*(2+6))

In the second method we will place a dummy card with two
zeros on it at the end of the deck.

Reading Input 59

Method 2. Testing for the dummy card

$JOB 'JIM CORDY'
PROGRAM MARKS2 (INPUT,OUTPUT);

VAR STUDENTNUMBER,MARK; INTEGER;
BEGIN

WRITELN(' STUDENT':10, 'MARK':10);
READ(STUDENTNUMBER,MARK);
WHILE STUDENTNUMBER <> 0 DO

BEGIN

WRITELN(STUDENTNUMBER,MARK);
READ(STUDENTNUMBER,MARK)

END
END.

$DATA
1026 86
205 1 90
3 163 7 1

0 0

In this example you will notice that the initialization
involves reading the first card outside the loop, in order to get
a value for the variable STUDENTNUMBER appearing in the condition
of the WHILE...DO. In the WHILE...DO line the symbol O means
"not equal". Since the first card has already been read, it must
be printed before a new card is read. This means that the
sequence is WRITELN then READ, rather than the way it is in
method 1. As soon as the new card has been read, we return to
the WHILE where the condition is tested.

Methods 1 and 2 for dealing with a variable number of items,
like cards, are used again and again in programming. The WHILE
is more difficult to program but probably more useful, since if
there are many cards, it is better for the user to stick in an
end-of-file card than to count cards.

60 PS/3: Control Flow

EXAMPLES OF LOOPS

We will
loops. The
example:

now give
examples

example programs to illustrate details
each draw a zigzag. Here is the

about
first

1

2
3
4
5
6
7
8
9

1 0
1 1

PROGRAM WIGGLE(INPUT,OUTPUT)?
VAR J: INTEGER;
BEGIN

FOR J:-1 TO 3 DO
BEGIN

WRITELN('
WRITELN('
WRITELN('
WRITELN('

END
END .

* ’) ;

*') ;

♦') ;

* ')

This program, appropriately called WIGGLE,

pattern:

prints the following

The WIGGLE program causes the body of the loop, lines 5 through
10, to be executed three times. The variable J is 1 during the
time the first four stars are printed. J is 2 during the time
the next four stars are printed, and J is 3 while the last four
stars are printed. After the last star is printed, J is set to 4
and since J then exceeds the limiting value, 3, of the loop, the

loop is terminated.

Notice that in this program the variable J is used for only
one purpose: to see that the loop is repeated the desired number
of times. Line 4 means, essentially, "Repeat this loop three
times." If we replaced line 4 by the following line

FOR J:-9 TO 11 DO

then the program would still print the same pattern. The only
difference is that J would have the values 9,10, and 11 during
the printing of the stars and would end up with the value of 12.
Although this replacement for line 4 does not change the pattern
printed, it should not be used because it makes the program more
confusing for people to understand. This is because people more

Examples of Loops 61

naturally think of "repeat this loop three times" as running
through the loop with values 1, 2, and 3, rather than values 9,
10, and 11.

Here is one more possible replacement for line 4 which does
not change the printed pattern:

FOR J:-3 DOWNTO 1 DO

In this case, J will be 3 while the first four stars are printed,
then J will be 2 while the next four stars are printed, and then
J will be 1 while the last four stars are printed. Finally, J
will end up with the value of zero. This illustrates the fact
that if the step size, which is -1 here, is negative, then the
loop will count backwards to smaller values. Again, for this
example program, the original version of line 4 is preferable
because it is easier to understand its meaning at a glance.

Once a FOR loop finishes, there is some confusion about the
final value of the counting variable. For example, in the WIGGLE
program, does J end up as 3 (the final value) or does it end up
as 4 (getting ready for the next time through but finding that 4
exceeds the limit 3). The Pascal language side steps this
question by leaving the value of J "undefined" after the loop,
meaning that the final value may be different depending on what
compiler you are using. You should avoid this confusion by
following this advice.

When a FOR loop has finished, do not use the final value of
the counting variable.

There is another possible source of confusion in FOR loops.
For example, what happens in WIGGLE if we set the counting
variable J to 15 by an assignment statement in the loop body?
The result is that J is not in the range 1 to 3. The FOR loop no
longer means: repeat for J equal to 1 then 2 then 3. To avoid
this confusion, Pascal has this rule:

Inside a counted FOR loop, the program must not not alter the
value of the counting variable.

We will now rewrite our WIGGLE program using WHILE...DO
instead of a counted FOR. We will call our new program WAGGLE.
(Did you know that in German "wiggle waggle" means "waddle" like
a duck? Well it does.)

62 PS/3: Control Flow

1 PROGRAM WAGGLE(INPUT,OUTPUT);
2 VAR J: INTEGER;
3 BEGIN
4 J:-1 ;
5 WHILE J<-3 DO
6 BEGIN
7 WRITELN(' ♦ ') ;

8 WRITELN(' *') ;

9 WRITELN(' *') ;
1 0 WRITELN(' *’) ;

1 1 J : -J + 1

12 END

13 END.

This WAGGLE program works like our pr evious WIGGLE program.

Lines 4, 5, and 1 1 Of WAGGLE are equivalent to line 4 of WIGGLE.

Since it is easier to see that line 4 of WIGGLE means, "Repeat

this loop three times , " the WIGGLE version is preferable. We

will, however, use WAGGLE to illustrate a few more points about

loops •

In the WAGGLE program, consider moving line 11, which is

J : -J+1;

up to between lines 6 and 7. This
printed pattern. It simply changes the
value increased. J will have the va
stars are printed, then 3 while the nex
and finally 4 while the last four sta
with the value of 4. Even though J is
four
J i s
line 5. This illustrates the fact that

once - at the

1 1

star s are pr in ted,
not compa red t 0 the
5 . This i 1 lus trate

i tion is tested only
loop.

Now 1 et us look back
ared this progr am f o
nto

1 ■ 1 J

change does not alter the
point at which J has its

lue 2 while the first four
t four stars are printed
rs are printed. J ends up
set to 4 before the last
stopped. This is because

until control returns to
in a WHILE...DO loop, the

top - each time through

at the WAGGLE program. Suppose that you
and mistakenly made line

The mistake is that the plus sign was changed to a minus sign.
Such a small mistake! Surely the computer will understand that a
plus was wanted! But it will not do so. The computer has a habit
of doing what we tell it to do rather than what we want it to do.
Given the WAGGLE program, with the mistake, the computer will do
the following. With J set to 1 it will print the first four
stars. Then, as a result of the erroneous line 11, it will set J
to 0 and will print another four stars. Then it will set J to -1
and print four more stars. Then it will set J to -2 and print
four more stars and so on and so on. In theory, it will never
stop printing stars because the condition J<"3 will always be

An Alternative Conditional Loop 63

trus. This is called an inf inite loop. Luckily, the computer
will eventually stop this looping when your program has printed
too much or has executed too many statements. When it stops your
program, it will print an error message complaining about the
excessive printing or running of your program. Unfortunately,
the error message will not tell you that you should have had a
plus sign instead of a minus sign, because the computer will not
know what you were thinking when you prepared the program.

AN ALTERNATIVE CONDITIONAL LOOP

There is another conditional loop in Pascal besides the
WHILE...DO loop. We can use REPEAT... UNTIL instead of WHILE...DO
when we know that the loop is always executed at least once.
Remember that WHILE...DO allows zero repetitions, when the
condition is false when first tested. The REPEAT... UNTIL loop
has this form.

REPEAT

list of statements separated by semicolons
UNTIL condition

In this loop no BEGIN...END is necessary if the body of the loop
contains more than one statement. The test of the condition does
not occur until the end of the loop so that all REPEAT... UNTIL
loops are executed at least once. We will use WHILE...DO loops
for most examples but here is a program that shows how a file of
cards could be read using REPEAT... UNTIL.

Method 2. Testing dummy card, at least one non-dummy

$JOB 'DAVE ELLIOTT'
PROGRAM MARKS3A(INPUT,OUTPUT);

VAR STUDENTNUMBER,MARK:INTEGER;
BEGIN

WRITELN(' STUDENT' I 10, 'MARK' : 10) ;
READ(STUDENTNUMBER,MARK);
REPEAT

WRITELN(STUDENTNUMBER,MARK);
READLN(STUDENTNUMBER,MARK)

UNTIL STUDENTNUMBER-0
END.

$DATA
1026 86
2051 90
3163 7 1

0 0

This program would not work if there were no student marks at
all.

64 PS/3: Control Flow

BRANCHES IN CONTROL FLOW

We have

straight lin

counted or

s t ru cture i n
se le ct ion 0

wh er e the re
br an ches i n
mu st deci de
de ci Sion i s
th e fork gi V

s i gn give s s
an i nstruct i

learned how to change from a flow of control in a
e, or sequential control, to flow in a loop, either
conditional. Now we must look at a different kind of
the sequence of control. This structure is called

r branching. It is a little like a fork in the road
are two paths that can be followed. The road
to two roads. When you come to a fork in a road you
which of the two branches you will take. Your
based on where you are heading. Suppose one sign at

es the name of your destination and the other road
ome other name. Suppose your destination is Toronto;
on for deciding which branch to take might be

IF LEFTBRANCHSIGN-'TORONTO' THEN
take the left branch

ELSE
take the right branch

We have written this decision in exactly the form you use in
Pascal for branching in the sequence of control. The main
difference is that the part we have written as "take the left
branch" must be replaced by a Pascal statement to do something.
The same is true of the other branch which follows the keyword

ELSE.

Suppose that there
the number of students
assigned to Class A if
over 80; otherwise they
The Pascal statement
student in, and counts

is a variable
in a class called A.
their mark in computer
are to be assigned to
which decides which

the number going into

which contains
Students are to be
science (CSMARK) is
Class B (CLASSB).
class to place the

each class, is

called CLASSA

IF CSMARK>80 THEN
CLASSA:-CLASSA+1

ELSE
CLASSB:-CLASSB+1;

The IF ... THEN... ELSE statement causes control to split into
two paths but, unlike forks in roads, you will notice that it
immediately comes back together again. This means that we are
never in any doubt about what happens; after the execution of one
or the other of the two branches, the control returns to the
normal sequence. One way of looking at the IF... THEN... ELSE
statement is that it provides two possibilities, only one of
which is to be selected, depending on whether the condition
following the IF is true or false. After one or the other pat:h
is executed the normal control sequence is resumed.

Three-Way Branches 65

If you want t
THEN branch or the
in front and END
segment

0 execute two or mo
ELSE branch. you mu
afterwards. For ex

re statements in either the
st enclose them with BEGIN
ample, consider the program

IF X>Y THEN
BEGIN

X:-Y+1;
Y; -5

END
ELSE

BEGIN
Y;-X+1;
X: -3

END ;

We will
shows how
statement

not try to give any meaning to this example
the BEGIN and END must be used when more
follows either the THEN or the ELSE.

It just
than one

You must always have one statement, or a
bracketed by BEGIN...END after the THEN. If
that you want to do in the ELSE branch you
word ELSE entirely. For instance, you may h
which would eliminate the balance in a bank
less than 10 cents.

compound statement
there is nothing
must leave out the

ave the statement
account if it were

IF BALANCE<10 THEN
BALANCE:-0;

Here there is no ELSE statement, but this just means that if the
balance is larger than 10 cents we do not make it zero.

A program error will occur if a semicolon is placed preceding
the keyword ELSE. Sometimes a superfluous semicolon will not do
any harm but here it will.

THREE-WAY BRANCHES

We have seen how a
up into two branches and
write if we have a s
required? We will do a
how any number of br
viewed as selecting one

sequential control struct
then brought together ag

ituation where more than
three-way branch and then
anches can be achieved,
of three alternatives.

ur e c an be spl it
a in. Wha t do we
two b ranc he s a re

you wi 11 s ee
This can al so be

As an example,
an election. Suppose
called Conservative
(middle-roaders) and
punch a 1, or a 2,

we will write a program that
that there are three po

(right). Radicals (left
that to vote for one of the
or a 3 respectively on a ca

counts votes in
litical parties
) and Mugwumps
se parties you
rd. Here is the f

66 PS/3: Control Flow

program that reads the vote cards and counts each party and the
total. The last card has -1 on it.

$JOB 'MARJORIE DUNLOP'
PROGRAM VOTING (INPUT,OUTPUT);

CONST CONSERVATIVE-1;
RADICAL-2;
MUGWUMP-3;

VAR VOTE,RIGHT,LEFT,MIDDLE,COUNT; INTEGER;
BEGIN

RIGHT:-0;
LEFT:-0;
MIDDLE : -0 ;
READ(VOTE);
WHILE VOTEO-1 DO

BEGIN
IF VOTE-CONSERVATIVE THEN

RIGHT:-RIGHT+1
ELSE

IF VOTE-RADICAL THEN
LEFT:-LEFT+1

ELSE
IF VOTE-MUGWUMP THEN

MIDDLE;-MIDDLE+1;
READ(VOTE)

END;
COUNT:-RIGHT+LEFT+MIDDLE;
WRITELN(' CONSERV.':10,'RADICAL':10,'MUGWUMP':10,'TOTAL':1
WRITELN(RIGHT,LEFT,MIDDLE,COUNT)

END.
SDATA
(vote cards with either 1, or 2, or 3 on them)
-1 (dummy value for end-of-file)

In this program we have two different things happening. One
is a three-way branch, which is accomplished by a series of three
IF...THE11 statements, one for each value of VOTE. This means
that an invalid vote does not get counted anywhere. If we wanted
notification that there was an invalid vote we could have
inserted the following in the program right before READ(VOTE) at
the end of the loop body.

ELSE
WRITELN(' INVALID VOTE',VOTE);

This then makes it a four-way branch.

The minimum program needed for a three-way branch would be
one IF ... THEN... ELSE statement nested inside another:

IF VOTE-CONSERVATIVE THEN
RIGHT;-RIGHT+1

ELSE
IF VOTE-RADICAL THEN

Case Statements 67

LEFT:■LEFT+1
ELSE

MIDDLE:-MIDDLE+1;

If there are any

There is no
at it.

invalid votes, they are given to the MUGWUMP

fixed way of doing the job. Here is another

party.

try

IF VOTE<MUGWUMP THEN
IF VOTE<RADICAL THEN

RIGHT:-RIGHT+1
ELSE

LEFT:■LEFT+1
ELSE

MIDDLE:-MIDDLE+1;

Again we have nesting of two IF...THEN...EL
a different sequence. It is good practice n
IFTHEN... ELSE nested after the THEN; it
it in the ELSE branch. Notice that we put
with an IF vertically beneath it so th
statements is clear. In the next section we
way and higher branches can be handled using

SE statements, but in
ot to have a second
is preferable to have
the ELSE that goes
at the nesting of the
will show how three-
a CASE statement.

CASE STATEMENTS

If there
process it is
statement is

are more than two alternatives
easier to use a CASE statement. The

in a selection
form of this

CASE expression OF
case-labell: statementi;
case-label2: statement2;

case-labelN; statementN
END;

Instead of the nested IF statement in the VOTING program we could
have this CASE statement

CASE VOTE OF
CONSERVATIVE: RIGHT:-RIGHT+1;
RADICAL: LEFT:»LEFT+1;
MUGWUMP: MIDDLE:-MIDDLE+1

END;

The value of the variable VOTE can be the same as one of the
three named constants: CONSERVATIVE, RADICAL or MUGWUMP, and
depending on its value the correspondingly labelled statement is
executed. For example, if VOTE-2 (RADICAL) then we execute
LEFT:-LEFT+1. The label of a statement is separated from the
statement itself by a colon. Each label must be an integer

68 PS/3: Control Flow

constant, for example 3 or MUGWUMP. Notice that there is an END
terminating the CASE statement and that there is no semicolon
just preceding END.

The CASE
statements, so
have one of
that VOTE is 1

statement expects to select exactly one of the
the selecting value, VOTE in this example, must
the values of the case labels. If we are not sure
2 or 3, we can expand the program to

IF VOTE has the value 1, 2 or 3 THEN
CASE VOTE OF

(Same as in previous CASE statement)
END

ELSE
WRITELN(' INVALID VOTE',VOTE);

The only

value of

using AND

thing missing is that we have not written
,2 or 3" in Pascal. We will see how this
and OR in the next chapter.

"VOTE has the
can be done

Each al

we want a

BEGIN...END,

ternative in the CASE must be a
list of statements, we must
as is done in IF statements.

s ingle statement,
enclose them

If

in

A particular alternative in a CASE statement can have more
than one label. Suppose the Conservative and Mugwump parties
form a coalition and we wish to count their votes together in the
variable COALITION. We could use this CASE statement.

CASE VOTE OF
CONSERVATIVE,MUGWUMP: COALITION:-COALITION+1;
RADICAL: LEFT:-LEFT+1

END

Of course we would need to declare COALITION as an integer
variable.

EXAMPLE IF STATEMENTS

We will now give a series of examples of IF statements which
might be used in a government program for handling income tax.
Let us suppose that the program is to write notices to people
telling them whether they owe tax or they are to receive a tax
refund. The amount of tax is calculated and then the following
is executed.

IF TAX > 0 THEN

WRITELN(' TAX DUE IS',TAX,' DOLLARS')
ELSE

WRITELN(' REFUND IS',-TAX,' DOLLARS');

Paragraphing the Program 69

Notice that it was necessary to change the sign of "tax" when
printing the refund.

Unfortunately, our program, like too many programs, is not
quite right. If the calculated tax is exactly zero, then the
program will print REFUND IS 0 DOLLARS. We could fix this
problem by the following.

IF TAX > 0 THEN

WRITELN(' TAX DUE IS’,TAX,' DOLLARS')
ELSE

IF TAX - 0 THEN

WRITELN(' YOU OWE NOTHING')
ELSE

WRITELN(' REFUND IS',-TAX,' DOLLARS');

We have used a nested IF statement to solve the problem, that is,
an IF statement which is inside an IF statement. In general, we
can nest any kind of statement inside an IF statement including
assignment statements, READ and WRITELN statements, FOR
statements, and IF statements.

Now suppose that when the tax is due we wish to tell the
taxpayer where to send his check. We can expand the program as
follows:

IF TAX > 0 THEN
BEGIN

WRITELN(' TAX DUE IS',TAX,' DOLLARS');
WRITELN(' SEND CHECK TO DISTRICT OFFICE')

END
ELSE

IF TAX -0 THEN
WRITELN(' YOU OWE NOTHING')

ELSE

WRITELN(' REFUND IS',-TAX,' DOLLARS');

Since we wanted more than one statement to be executed
when TAX > 0 we had to group them together using the construct:

BEGIN...END

This construct acts like a set of parentheses and makes our two
statements appear as one compound statement. Notice that no
BEGIN...END is necessary after the ELSE because what follows is a
single IF ... THEN... ELSE statement.

PARAGRAPHING THE PROGRAM

In order to follow the structure of the nesting of
IF...THEN...ELSE statements we have indented the program so that
the IF and ELSE that belong to each other are lined up
vertically. The statements following the THEN and the ELSE are

70 PS/3: Control Flow

indented. This is called paragraphing the program, and is
analogous to the way we indent paragraphs of prose to indicate
grouping of thoughts. Paragraphing makes a valuable contribution
to understandabi1ity and is a must in structured programming.

Also, if you examine the programs with FOR loops you will see
that the loop body has been indented starting right after the
FOR. In the next chapter we will be examining the situation
where FOR loops are nested, and then we will use two levels of
indentation. We indent the statement bracketed by BEGIN and END
to show the scope of the compound statement.

There are no set rules about how much indentation you should
use, or exactly how, for instance, an IF... THEN... ELSE statement
should be indented; but it is clear that being systematic is an
enormous help.

CHAPTER 5 SUMMARY

In this chapter we introduced statements which allow for (a)
repetition of statements and (b) selection between different
possibilities. We introduced conditions which are used to
terminate the repetition of statements and to choose between
different possibilities. Comparisons and Boolean operators are
used in specifying conditions. The following important terms
were discussed in this chapter.

Loop - a programming language construct which causes repeated
execution of statements. In PS/k, loops are either counted
FOR loops or conditional loops.

Counted FOR loop - has the following form:

FOR variable :■ start TO limit DO
statement

The variable, called the counting variable, must have the
INTEGER type. Each of "start," and "limit" can be
expressions; these expressions are evaluated before the
repetition starts and are not affected by the statement of
the loop body. Counting proceeds by Is from the start up to
and including the limit. If start is not less than or equal
to limit no execution of the loop body will take place.
Counting backwards by -1 is accomplished by using the form

FOR variable:-start DOWNTO limit DO
statement

Limit must be less than or equal to start or else the loop
will not be executed at all.

WHILE loop has the following form:

Chap ter 5 Summary 71

WHILE condition DO
statement

The condition is tested at the beginning of each pass through
the loop. If it is found to be true, the statement of the
loop body is executed and then the condition is again tested.
When the condition finally is found to be false, control is
passed to the statement which follows the loop body
statement. Any variables which appear in the condition must
be given values before the loop begins. The loop body is
executed zero or more times.

REPEAT loop - has the following form

REPEAT

statements separated by semicolons
UNTIL condition

Similar to WHILE loop except that the condition is tested
after the execution of the statements? repetition continues
until the condition is found to be true. The loop body is
executed one or more times.

Loop body - the statement that appears inside a loop. If you
want to have several statements in the body of a FOR...DO
loop or a WHILE...DO loop they must be made into a compound
statement. To do this the statements are bracketed by BEGIN
and END and separated from each other by semicolons.

Comparisons - used in conditions. For example, comparisons can
be used in a condition to determine how many times to execute
a loop body. The following are used to specify comparisons.

< less than
> greater than
<“ less than or equal
>" greater than or equal
“ equal
<> not equal

Conditions ~ are either true or false. Conditions can be made up
of comparisons and the following three Boolean operators.

AND
OR
NOT

End of~file (or end-of~data) detection — When a loop is reading a
series of data items, it must determine when the last data
item has been read. This can be accomplished by first
reading in the number of items to be read and then counting
the items in the series as they are read. It can also be
accomplished by following the last data item by a special

72 PS/3: Control Flow

dummy card which contains special, or dummy data. The
program knows to stop when it reads the dummy data.

IF statement - has the following form:

IF condition THEN
statement

[ELSE
statement]

The square brackets are shown around the ELSE clause to show
that it can be om.itted. If the condition is true, the first
statement is executed. If the condition is false, the second
statement, if present, is executed. In either case, control
then goes to next statement after the ELSE clause - or if the
ELSE clause is omitted, to the next statement after the THEN
clause. Any statement, including another IF statement, can
appear as a part of an IF statement. If more than one
statement is required after the THEN or ELSE they must be
bracketed by BEGIN...END into a compound statement. Note
that there can be no semicolon preceding the ELSE.

CASE statement - when there are more than two alternatives in a
selection statement, a CASE statement can be more direct than
a set of nested IF... THEN... ELSE statements. It has the form

CASE expression
case-label 1 :
case-label2 :

OF
statement 1;
statement2;

case-labelN:
END

statementN

When the CASE statement is encountered in a program the
expression is evaluated and the statement executed whose
case-label matches that value. The expression must match one
of the labels or the meaning of the CASE statement is
undefined (depends on the particular compiler). Each case
label is an integer constant. Several case labels separated
by commas can label a single choice.

Paragr aphing - indenting
ea sily s een by people.
in side I F st atements ar
or ganiza t ion obvious .
tr ans1at ing and executi

a program so that its
The statements inside

e indented to make the ove
The computer ignores parag
ng programs.

structure is
loops and

rail program
raphing when

CHAPTER 5 EXERCISES

1 .
the

Suppose I
following

and J are variables with values
conditions are true?

6 and 1 2 . Which of

(a) 2*I<-J

Chapter 5 Exercises 73

(b) 2*1-1<J
(c) (l<-6) AND (J<-6)
(d) (l<-6) OR (J<-6)
(e) (I>0) AND (I<-10)
(f) (I<-12) OR (J<-12)
(g) (I>25) OR ((I<50) AND (J<50))
(h) (104) AND (105)
(i) (I<4) OR (I>5)
(j) NOT(I>6)

The following program predicts the 2 .
wallalumps over a 2-year period, based on the assumption of an
initial population of 2 and a doubling of population each 2
months. What does the program print?

PROGRAM EXPLODE (INPUT,OUTPUT);
VAR MONTH,POPULATION: INTEGER;
BEGIN

POPULATION:-2;
WRITELN(' MONTH',' POPULATION');
FOR MONTH:-0 TO 24 DO

BEGIN

WRITELN(MONTH,POPULATION);
POPULATION:-2*POPULATION

END
END.

3. Suppose you have hidden away 50 dollars to be used for some
future emergency. Assuming an inflation rate of 12 per cent per
year, write a program to compute how much money, to the nearest
dollar, you would need at the end of each of the next 15 years to
be equivalent to the buying power of 50 dollars at the time you
hid it.

4. Trace the following program. That is, give the values of the
variables together with any output after the execution of each
statement.

74 PS/3: Control Flow

1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
1 4
1 5
16
1 7
18
19

$JOB 'F.G.WONG'

PROGRAM CLASS (INPUT,OUTPUT);

VAR NUMBER,GRADE,SUM: INTEGER;
BEGIN

SUM:-0;

READ(GRADE);

NUMBER:-0;

WHILE GRADEO-1 DO
BEGIN

IF(GRADE>-0) AND (GRADE<-100) THEN
BEGIN

SUM:-SUM+GRADE;

NUMBER:-NUMBER+1
END

ELSE

WRITELN(' **ERROR:GRADE-',GRADE);
READ(GRADE)

END;

WRITELN(' AVERAGE IS',SUM/NUMBER)
END.

$DATA

95 110 85 -1 75

5. Write a program that reads the following data cards and
calculates the average of (a) each of the two columns of data,
and (b) each row of the data. You should either precede the data
with a number giving the count of the following data cards or add
a dummy card following these data cards or rely on the normal
end-of-file mark.

92 88
75 62
8 1 75
80 80
55 60
64 60
8 1 80

6. Write a program which reads in a sequence of grades (0 to 100)
and prints out the average grade (rounded to the nearest whole
number), the number of grades and the number of failing grades
(failing is less than 50). Assume that a "dummy" grade of 999
will follow the last grade. See that your output is clearly
labelled. Answer the following questions:

(a) What will happen if the grade 74 is mispunched as 7 4?

(b) What will happen if the dummy grade 999 is left off? (You can
try this.)

(c) What will your program do if there are no grades, i.e., if
999 is the only data item?

(d) What will happen if the two grades 62 and 93 are mispunched
as 6293?

Chapter 5 Exercises 75

Test your program using the following data;

85 74 44 62 93
41 69 73 999

7. Write a program which determines the unit price (cents per
ounce) of different boxes of laundry soap. Round the unit price
to the nearest penny. Each box will be described by a card of
the form;

pounds ounces price

5 0 125

This box of soap has a rounded unit price of 2 cents per ounce.
Make up about 10 data cards describing soap boxes; if you like,
use real examples from a supermarket. You are to precede these
cards with one data card containing a single integer giving the
number of soap box cards. Do not use a dummy card to mark the end
of the data. Print a nicely labelled table giving weights,
prices in cents and unit costs. Answer the following questions;

(a) What would your program do if the above example data card
were mispunched as

50 125

(b) Would it be possible to make your program "smart enough" to
detect some kinds of mispunched data? How or why not?

ktA^ *irsi^ #, .*• If

.•V»-w ■ . ''” •

^%gkJ ^ ^ *1 •• ■.*

'•tiTA. ^ '

‘W »i

* < j •

%?•!> *'■ ♦ ll^r ^ ;•• » i;.

^ rl’.

• y ^ f' ’'•■^' ■ *"” * *' * fc! *" ’

- ‘04
** • ^ 1 •

. - '♦iv
• 1

«

">

ft

ft

f

A A

Chapter 6

STRUCTURING CONTROL FLOW

In the last chapter we introduced the two
that cause an alteration from the linear flow
program. One kind caused looping, the
WHILE...DO and the REPEAT... UNTIL; the other c
selective execution, the IF ... THEN... ELSE and
Learning to handle these two kinds of instruct
essential to programming. And learning t
systematic way is essential to structured prog

kinds of statements
of control in a
counted FOR, the

aused branching, or
the CASE statement,
ions is absolutely
o handle them in a
ramming.

BASIC STRUCTURE OF LOOPS

It is hard to appreciate, when you first learn a concept like
loops, that all loops are basically the same. They consist of a
sequence of statements in the program that:

1. Initialize the values of certain variables that are to be used
in the loop. These consist of assigning values to

(a) variables that appear in the condition of a WHILE
condition DO or a REPEAT... UNTIL condition.

(b) variables that appear in the body of the loop on the
right-hand side of assignment statements.

2. Indicate that a loop is to commence. If it is a WHILE...DO
give the condition that is to control the number of repetitions.
If it is a counted FOR loop give the number of repetitions. If
it is a REPEAT loop the control on the number of repetitions is
not given until the end of the loop body. Each of the three
types of loops has a control phrase that determines the number of
repetitions.

77

78 Structuring Control Flow

(a) A counted loop's repetition is controlled by the control
phrase after the FOR, for example

FOR I:-1 TO 20 DO

(b) In the conditional WHILE...DO loop, the control phrase
is, for example

WHILE I <“ 20 DO

The condition should contain at least one variable.

(c) In the conditional REPEAT... UNTIL loop the control phrase
is at the end of the loop, for example

UNTIL J>5

3. Give the list of statements, called the body of the loop, that
are to be executed each time the loop is repeated. Both the FOR
and WHILE loops must have a single statement which may be
BEGIN...END as the body. If the loop is a conditional loop, then
within the body of the loop there must be some statements that
assign new values to the variables appearing in the condition.
Usually there is only one variable and its value may be changed
by either

(a) an assignment statement or

(b) a READ statement.

4. At the end of the loop control is returned to the beginning.

5. Give the next statement to be executed once the looping has
been carried out the required numbers of times. Control goes
from the beginning of the loop to this statement when

(a) the condition of the WHILE is false or

(b) the value of the index controlling the counted FOR loop
has already reached the value indicated after the word TO.

Control passes directly from the end of a REPEAT... UNTIL loop to
the next statement when the condition after the UNTIL is true.

It
the lo
the e
always
loop.
In thi
possib
1angua
contro
contro

is to be noted very carefully that there is no exit f
op, except from one fixed location (either the beginning
nd depending on the kind of loop it is), and this e
goes to the statement immediately after the end of
It is never possible to go somewhere else in a progr

s way we keep track of control flow and never have
ility of getting confused about its path. The compl
ge Pascal offers a statement for altering the path
1 called the GOTO statement. It permits you to s
1 to statements with "labels" in your program. Si

r om
or

X i t
the
am.
the
ete

of
end
nee

Flow Charts 79

computer scientists came to recognize the importance of proper
structuring in a program, the freedom offered by the GOTO
statement has been recognized as not in keeping with the idea of
structures in control flow. For this reason we will never use
it. It is not a member of any subset of PS/k. You will find
that a Standard Pascal compiler will not prevent you from using a
GOTO. Even so, you should not use it.

For many good programmers it has long become a habit to
restrict the use of the GOTO to that of leaving the body of a
loop somewhere in the middle and exiting to the statement
following the end of the loop. An exit inside the body is
usually related to a second condition. This second condition can
be incorporated in the condition following the WHILE or UNTIL by
having a compound condition. We will look at examples of this
later in the chapter.

FLOW CHARTS

A flow chart is a diagram made up of boxes of various shapes,
rectangular, circular, diamond and so on, connected by lines with
directional arrows on the lines. The boxes contain a description
of the statements of a program and the directed lines indicate
the flow of control among the statements. The main purpose of
drawing a flow chart is to exhibit the flow of control clearly,
so that it is evident both to the programmer and to a reader who
might want to alter the program.

A method of programming that preceded the present method of
structured programming found that drawing a flow chart helped in
the prograiruning process. It was suggested that a first step in
writing any program was to draw a flow chart. It was a way of
controlling complexity.

When we limit ourselves to the two standard forms of altering
control flow, the loop and the selection constructs, there is
little need to draw these flow charts. In a sense, especially if
it is properly paragraphed, the program is its own flow chart; it
is built of completely standard building blocks.

Perhaps it would be helpful to show what the flow charts of
our two basic building blocks would be like in case you wanted to
draw a flow chart for your whole program.

Here is the flow chart for an IF... THEN... ELSE statement.

80 Structuring Control Flow

FLOW CHART FOR IF ... THEN ... ELSE

The flow chart for a CASE statement would be similar except

that there are more than two alternative paths.

For the WHILE loop that we described, the flow chart would be

as shown. The various phases are numbered.

FLOW CHART FOR CONDITIONAL LOOP

Nested Loops 81

The flow chart for the counted
box 2 would initialize the index
by the required amount and then
executed the specified number of
similar also.

FOR would be similar except that
to its first value, increment it
test to see if the loop has been
times. A REPEAT...UNTIL loop is

With these basic diagrams and the ordinary straight line
sequence representing the compound statement, flow charts for all
PS/k programs can be built. In a way, because they are so
obviously related to the program, they do not really need to be
drawn. Any one of the rectangular boxes in these diagrams may be
replaced by a sequence of rectangular boxes, or either one of the
two basic diagrams themselves. An important thing to notice is
that into each of these elementary blocks there is a single
entrance and, from each, a single exit. This is critical to
maintaining good structure.

PROBLEMS WITH LOOPS

Certain errors are very common with loops. With counted
loops the likelihood of errors is much smaller, since the
initialization and alteration of the index are done by the FOR
itself. You can, however, forget to initialize a variable that
is used in the body of the loop. Another problem comes if by
chance the index that is used to count the loop is altered in the
loop body. This is strictly illegal in Pascal. The letters I,
J, and K are often used as indexes, and you must be careful not
to use them again before a previous use is finished. This can
happen when one FOR loop is nested inside another and the index I
is used by mistake for both loops. You might write

FOR I:-1 TO N DO

and forget to initialize N. You should
all loops by hand to see if the first
correctly. Then you should also check the

trace the
iteration
last one.

execution of
is working

NESTED LOOPS

We will now look at the more complicated loops. In the
following example, subsidiary output has been inserted for
testing purposes. The program sums the marks of students in 4
subjects and prints these with the average, to the nearest mark.
There are a number of cards, one for each student. A card with
the total number of students precedes the mark cards.

82 Structuring Control Flow

$JOB 'BOB CHERNIAK'
PROGRAM CLASS (INPUT,OUTPUT);

(* A SAMPLE PROGRAM WITH NESTED LOOPS *)
VAR NUMBEROFSTUDENTS,I,J,SUM,AVERAGE,

MARK,STUDENTNUMBER: INTEGER;

BEGIN
READ(NUMBEROFSTUDENTS);
FOR I:-1 TO NUMBEROFSTUDENTS DO

BEGIN
SUM:-0;
READ(STUDENTNUMBER);
FOR J:-1 TO 4 DO

BEGIN
READ(MARK);
SUM:-SUM+MARK;
WRITELN(MARK,SUM)

END;
AVERAGE:-ROUND(SUM/4);
WRITELN(STUDENTNUMBER,AVERAGE)

END
END.

$DATA
3
205 55 60 65 70
208 83 8 1 96 90
209 72 68 78 81

The program is being tested with the extra printing of

WRITELN(MARK,SUM);

Here is the output produced by the computer in addition to
the usual program listing:

55 55
60 1 1 5
65 180
70 250

205 63
83 83
81 164
96 260
90 350

208 88
72 72
68 140
78 2 1 8
8 1 299

209 75

Since we were now satisfied that all was well, we removed the
card with WRITELN(MARK,SUM) and ran the program with the full

An Example Program 83

number of data cards. You will notice that when we have one FOR
loop nested inside another we use two levels of indentation to
indicate the control structure.

AN EXAMPLE PROGRAM

We will illustrate some details about loops with another
program. Like some of our previous examples, this program prints
a zigzag. However, our new program is smarter than the old ones
in that it can print out different sizes of and numbers of zigs
and zags, depending on the input data.

$JOB 'IRA GREENBLATT'
PROGRAM PICKZIG (INPUT,OUTPUT);

VAR MAJOR,MINOR,
HOWMANY,HOWBIG: INTEGER;

BEGIN
READ(HOWMANY,HOWBIG);
FOR MAJOR:-1 TO HOWMANY DO

BEGIN
WRITELN(' **** ') ;
FOR MINOR:-1 TO HOWBIG DO

WRITELN(' * ') ;
WRITELN(' ') ;
FOR MINOR:“1 to HOWBIG DO

WRITELN(' *')
END

END.
$DATA

3 2

This program, given the data values 3 and 2, prints the following
pattern. ^We have shown in parentheses values of MAJOR and MINOR
during the printing of each of the single star lines.

84 Structuring Control Flow

4t 4> 4>

*
*
♦ ★ ♦ *

*
*

*

♦ ♦ ♦ *

*

*
*

*
*

(MAJOR,MINOR)

(1,1)
(1,2)

(1,1)
(1,2)

(2,1)
(2,2)

(2,1)
(2,2)

(3.1)
(3.2)

(3.1)
(3.2)

The first data value, 3, caused the sub-pattern

*
*
* ♦ ♦ *

>•<

to be printed three times. The second data value, 2, was used in
determining the height of this sub-pattern.

As you can see in the program, there are two separate loops
inside the main FOR loop. Both of these loops use the variable
MINOR as a counting variable. There is no difficulty using MINOR
in this way. Each time one of these two loops is entered, MINOR
is set back to have the value 1.

We can change the pattern printed by changing the data card.
For example, the following pattern is printed for data values 1
and 1 .

(MAJOR,MINOR)

* (1,1)

* (1,1)

In this case, the loops are each executed only once.

Loops With Multiple Conditions 85

We can shrink the pattern down to nothing at all by using the
data values 0 and 1. When the first data value is zero, then the
limit value HOWMANY is also zero and is less than MAJOR'S
starting value 1. As a result, the main loop is executed zero
times. Since the main loop is not executed, the second data

We could supply data values 0 and 2 value, 1, has no effect.
instead of 0 and 1 and
no pattern at all.

Now let us switch
zero, but the first is n
becomes

In this case the main li

For data values 2 and 0, the pattern

loops were each executed zero times

The data values
pattern to print. You
different pictures for

were used by this program to determine the
could write other programs which print
different data.

LOOPS WITH MULTIPLE CONDITIONS

Sometimes we must terminate a loop if something happens that
is unusual. One of the conditions controlling the loop is the
standard one? the other is the unusual one. All loops with
double-headed conditions must be WHILE...DO or REPEAT... UNTIL
loops, since the counted loop does not allow for the possibility
of a second condition. We have seen that compound conditions can
be formed from two or more simple conditions using the AND and OR
Boolean operators.

As an example, we will write a program to look for a certain
number in a list of numbers on cards. If you find it in the
list, print the position it occupies in the list; if it is not in
the list, print NOT IN LIST. The list will be positive integers
terminated by an end-of-file marker -1.

86 Structuring Control Flow

$JOB 'MARY SEEDHOUSE'
PROGRAM HUNT (INPUT,OUTPUT);

VAR NUMBER,LISTNO,I: INTEGER;
BEGIN

READ(NUMBER);
READ(LISTNO);
I : -1 ;
WHILE (LISTNOONUMBER) AND (LISTNO <> -1) DO

BEGIN
I:-1+1 ;
READ(LISTNO)

END ;
IF LISTNO-NUMBER THEN

WRITELN(' I)
ELSE

WRITELN(' NOT IN LIST')

END.
IDATA

35
12 16
51 -1

25 35 40

The output for the program with this data is

I- 4

Notice that in the body of the loop the variable LISTNO in
the condition can be changed by the READ(LISTNO) statement; it is
initialized outside the loop. Since an index I is required to
give the position of the number in the list, it must be
incremented in the statement I:-I+1 and initialized to 1 outside

the loop.

IF STATEMENTS WITH MULTIPLE CONDITIONS

Just as the conditional loop can have multiple conditions, so
also can IF statements. These can be used very effectively to
avoid nesting of IF statements. Suppose you want to count people
in a list who fall into a particular age group, say 18-65, as
ADULTS. The following program will count the number in the
category ADULT in the list. The list of ages is terminated by a

- 1 .

Chapter 6 Summary 87

$JOB 'ANGIE BAUER’
PROGRAM WORKERS (INPUT,OUTPUT)?

CONST DUMMY--1;
VAR ADULT,AGE; INTEGER;
BEGIN

READ(AGE);
ADULT;-0;
WHILE AGEODUMMY DO

BEGIN

IF (AGE>-18) AND (AGE<-65) THEN
ADULT:-ADULT+1;

READ(AGE)
END;

WRITELN(' NUMBER OF ADULTS-ADULT)
END.

$DATA
16 25 31 12 28 69 -1

The output is NUMBER OF ADULTS- 3. The IF with the compound
condition could have been replaced by the more awkward
construction with a nested IF statement:

IF AGE>-18 THEN
IF AGE<-65 THEN

ADULT:-ADULT+1;

but this is not advisable.

CHAPTER 6 SUMMARY

In this chapter we have taken a closer look at the loop and
selection constructs. We discussed flow charts and the GOTO
statement as they relate to the PS/k subset of Pascal. We
presented more complex examples of loops and conditions. The
following important terms were discussed.

Flow chart - a graphic representation of a program. A flow chart
consists of boxes of various shapes interconnected by arrows
indicating flow of control. PS/k programs can be represented
by flow charts.

Exit from a loop - means stopping the execution of a loop. Exit
from a WHILE...DO loop occurs at the beginning of the loop
when the loop's condition is found to be false. Exit from a
REPEAT... UNTIL loop occurs at the end of the loop when the
condition is found to be true.

GOTO statement (not in PS/k) - transfers control to another part
of a program. The GOTO statement is available in full Pascal
and is sometimes used to exit from a loop by transferring
control to the statement following the loop. Careless use of

88 Structuring Control Flow

GOTO statements leads to complex program structures which are
difficult to understand and to make correct.

Nested statements - means statements inside statements. For
example, FOR loops can be nested inside FOR loops.

Multiple conditions - conditions which use the AND and OR Boolean

operators .

CHAPTER 6 EXERCISES

We will base all the exercises for this chapter on the same
problem, which we now describe. A meteorologist keeps records of
the weather for each month as a deck of punched cards. The first
card of the deck gives the number of days of the month.

The following cards give the rainfall, low temperature, high
temperature and pollution count for each day of the month. For

could be as follows: the data for a month

3 1
0 33 37 3

1 . 2 34 39 3

0 35 40 0.5

0
etc

34
•

38 2

Each of the following exercises requires writing a program which
reads one month's weather and answers some questions about the
month's weather. To make things easier for you, answers for the

first two exercises are given.

1. Find the first rainy day of the month. (The following
program finds the required day and is a solution for this

exercise.)

PROGRAM WETDAY (INPUT,OUTPUT);
VAR RAIN,LOW,HIGH,POLLUTION: REAL;

DAY,MONTHLENGTH: INTEGER;

BEGIN
READ(MONTHLENGTH);
DAY:-0;
RAIN:-0;
WHILE (RAIN-0) AND (DAY<MONTHLENGTH) DO

BEGIN
READ(RAIN,LOW,HIGH,POLLUTION);
DAY:-DAY+1

END ;
IF RAIN>0 THEN

WRITELN(' DAY',DAY,' WAS RAINY')
ELSE

WRITELN(' NO RAINY DAYS')
END .

Chapter 6 Exercises 89

2. See if the data cards for the days of the month are
reasonable. Verify that the rainfall does not exceed 100 and is
not negative. Verify that the temperature lies between -100 and
200 and that the high is at least as large as the low. Verify
that the pollution count is neither above 25 nor below zero.
(The following program validates the month's data and is a
solution for this exercise.)

PROGRAM VERIFY (INPUT,OUTPUT);
VAR RAIN,LOW,HIGH,POLLUTION: REAL;

DAY,MONTHLENGTH: INTEGER;
BEGIN

READ(MONTHLENGTH);
FOR DAY:-1 TO MONTHLENGTH DO

BEGIN

READ(RAIN,LOW,HIGH,POLLUTION);
IF(RAIN<0)OR(RAIN>100)THEN

WRITELN(' DAY',DAY,' HAS WRONG RAIN:',RAIN);
IF(LOW< - 10 0)OR(LOW>HIGH)OR(HIGH>2 0 0)THEN

WRITELN(' DAY',DAY,

' HAS WRONG TEMPERATURES:',LOW,HIGH);
IF(POLLUTION<0)OR(POLLUTION>25)THEN

WRITELN(' DAY',DAY,
' HAS WRONG POLLUTION:',POLLUTION)

END
END.

3. What was the warmest day of the month, based on the high?

4. What was the first rainy day having a high temperature above
38?

5. What were the days of the month with more than a 5-degree
difference between the high and low temperatures?

6. What were the two warmest days of the month?

7. Did the pollution count ever exceed 5 on a day when the
temperature stayed above 35?

8. What three consecutive days had the most total rainfall?

9. Was it true that every rainless day following a rainy day had
a lower pollution count than the rainy day?

10. Using the first 10 days' data, "predict" the weather for the
11th day. Compare (either by hand or within the program) the
prediction with the data for the 11th day.

• t

*

1 - • _

t ijOUTiT «C*'4

^ *i[»t4

I <’ 3*s ^•'. • .> "1
.•%•%' «»;-i'.w.j^'j . _

. rtH^r*><r'

• f

• ' i:

-, * » - * TT ▼
. -nionii^** • It

• . • ^ • t. :\ii< •, f • flfir%
--T' » A :i V ■• * ;A . *’tt ‘

A*; •• •.* , tf ^.'*1 ••>- ^ '*»'V: :<i

.•; i f . ^ ^fK ’ t- •■••*:r.’'■■"•> .'"ilfc' i

F-4''- • .♦••s<4» £. V > ^ A^
* * . ♦ •
rjs “ * in*

»♦

't;

i|«if
&j|il

■* i'l, ♦. ••»
* A«*

«.\A

* f< •.»• ^ ji/r tfit
'iMlf CHi

f »#• *r.^ *

i» I
» 1 V : « %

j a *

itum .>

. - .JS

^ ^ » _

pruw.- ' I

■', • <■’ H- a* •
4 m Ik

..At

I . •

• ^ V
• r

K.A 1

[-> 1

♦ • • • i

Chapter 7
PS/4: ARRAYS

So far in our programming, each memory location for data had
its own speciax name; each variable had a unigue identifier. in
this chapter we will introduce the idea that groups of data will
share a common name and be differentiated from each other by
numbering each one uniquely.

DECLARATION OF ARRAYS

Suppose, for
we wanted the sum o
one of 50 memory 1
give the list, or a
various members of
index is most often
is called NUMBER!
number!50]. To dec
declaration

example, that we had a list of 50 integers and
f all the numbers. Rather than giving each
ocations holding the list a different name, we
rray, a name, say NUMBER, and distinguish the
the array by giving each a unique index. The
an integer. The first element in the array

1], the second NUMBER!2] and so on up to
lare such an array of variables we use the

VAR NUMBER: ARRAY!l..50] OF INTEGER;

Each element of the array NUMBER is an INTEGER type variable. In
the declaration, after the keyword ARRAY we give, in square
brackets, the range of the index, namely from 1 to 50. Here is
the program that reads 50 integers into the array, adds them up,
and prints the sum:

91

92 PS/4: Arrays

PROGRAM SUMLISTdNPUT,OUTPUT) ;
VAR NUMBER: ARRAY[1..50] OF INTEGER;

SUM,I: INTEGER;
BEGIN

(♦ READ IN NUMBERS *)
FOR I:-1 TO 50 DO

READ(number!I 1) ;
(★ ADD NUMBERS *)
SUM:-0 ;
FOR I:- 1 TO 50 DO

SUM:-SUM+NUMBER[I 1 ;
WRITELN(SUM)

END.

The declaration of the array NUMBER indicates that the index has
a range from 1 to 50 and that the elements of the array are
integers. In the FOR loops, reference to NUMBER!11 refers in
turn to NUMBER!1I, NUMBER!2] to NUMBER!50). This is what makes
the array such a powerful programming tool; we need not refer to
each element separately in the program but only to the general

element NUMBER!11.

In this example, it is not necessary to read all the numbers
and then add them up; we did it that way just to show what is
necessary for reading or summing a list. We could have written
only one loop, combining the two operations.

(* READ AND ADD NUMBERS *)
SUM:-0;
FOR I:-1 TO 50 DO

BEGIN
READ(number!I 1) ;
SUM:-SUM+NUMBER!I]

END ;
WRITELN(SUM)

If reading and adding the numbers is all that is required we
could do it without an array at all as in this program:

PROGRAM ADDUP(INPUT,OUTPUT);
VAR NUMBER,SUM,I: INTEGER;
BEGIN

SUM:-0;
FOR I:-1 TO 50 DO

BEGIN
READ(NUMBER);
SUM:-SUM+NUMBER

END ;
WRITELN(SUM)

END .

We should not use an array if we do not need one.

Two-Dimensional Arrays 93

Usually, there is more to be done that requires having the
list still present. For instance we could think of dividing each
member of a list by the sum and multiplying by 100 before we
wrote them out. This would express each entry as a percentage of
the group. To do this we would add these statements to our
original program;

FOR I;-1 TO 50 DO
BEGIN

NUMBERfI I :“ROUND(NUMBER[I]* 1OO/SUM) ;
WRITELN(NUMBER[I])

END ;

In the FOR loop the statements with the index I result in each
member of the list being operated on and changed to a percentage
then printed.

TWO-DIMENSIONAL ARRAYS

It is possible to have arrays that correspond to entries in a
table rather than just a single list. For instance, a table of
distances between 4 cities might be

1 2 3 4

1 1 0 20 38 56
2 120 0 12 30
3 138 12 0 1 5
4 |56 30 1 5 0

We could call this array DISTANCE. DISTANCE[1,41
DISTANCE[3,4] is 15. The first number in the parentheses refers
to the row in the table, the second to the column. You can see
that DISTANCE[3,11 has the same value as DISTANCE I 1,3 I; the table
is symmetric, in this case, about the diagonal line running from
top left to bottom right. All entries on this diagonal are zero;
the distance from a city to itself is zero.

We must learn how to declare such a two-dimensional array.
All that is necessary is to write

VAR DISTANCE: ARRAY I 1 . .4, 1 . .4] OF INTEGER;

Here, in square brackets after the keyword ARRAY, we have the
ranges of two indexes separated by a comma. The first index is
the number of rows, the second the number of columns. As an
example, we will read in this table and store it in the memory.
On each input data card we will punch one row of the data;

94 PS/4: Arrays

PROGRAM READTABLE(INPUT,OUTPUT);
VAR DISTANCE: ARRAY[1..4,1..41 OF INTEGER;

I,J: INTEGER;
BEGIN

FOR I:-1 TO 4 DO
BEGIN

FOR J:-1 TO 4 DO
READ(DISTANCE[I,J]);

READLN
END

END.

In this program there is one FOR loop nested inside another. We
have used two indexes, I to give the row number, J to give the
column number. When 1-1 the inner loop has J go from 1 to 4.
This means the elements of the array on the first card are stored

in these variables:

DISTANCE[1,1] DISTANCE[1,21 DISTANCE[1,31 DISTANCE[1,4]

These are the elements in row 1 of the table. In giving the name
of each element of a two-dimensional array you write, in square
brackets separated by a comma, the values of the two indexes. It
is just customary to think of a table in such a way that the
first index is the row number, the second the column number.
Since our table is symmetric it does not matter if we interchange
rows and columns, because we get exactly the same result. For
most tables it does matter, and you must be careful. A table
like this is called a matrix by mathematicians.

AN EXAMPLE PROGRAM

We will illustrate the use of two-dimensional arrays in terms
of a set of data collected by a consumers' group. This group has
been alarmed about the recent rapid rise in price of processed
wallalumps. They sampled grocery store prices of processed
wallalumps on a monthly basis throughout 1978, 1979 and 1980 and
observed that prices varied from 75 cents to 155 cents as the
following table shows:

Month

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
197 8 87 89 89 89 85 85 8 5 75 90 100 100 100
197 9 95 95 95 95 90 90 8 5 90 100 1 1 0 120 1 1 0
198 0 1 1 0 1 1 0 1 1 5 1 1 5 1 1 5 100 1 0 0 110 120 140 145 155

The se 36 pr ices wer e ma de a va i1able on data cards and
was n eeded to ana ly ze the pr ice changes.

a program

An Example Program 95

The following program reads in the data and determines the
average price for 1979:

PROGRAM COST (INPUT,OUTPUT);

VAR PRICE: ARRAY[1978 . . 1 980 , 1..12] OF INTEGER;
MONTH,YEAR,TOTAL: INTEGER;

BEGIN
FOR YEAR:-1978 TO 1980 DO

(* READ IN PRICES FOR ONE YEAR *)
FOR MONTH:«1 TO 12 DO

READ(PRICE[YEAR,MONTH]);
(* DETERMINE THE AVERAGE PRICE IN 1979 *)
TOTAL:"0;
FOR MONTH:-1 TO 12 DO

TOTAL:“TOTAL+PRICE[1979,MONTH];
WRITELN(' AVERAGE 1979 PRICE:', ROUND(TOTAL/12))
i* ADD STATEMENTS HERE TO CALCULATE OTHER AVERAGES *)

END.

In this program, the array PRICE is declared so it can have a
first index which can range from 1978 to 1980 and a second index
which can range from 1 to 12. Effectively, the PRICE array is a
table in which entries can be looked up by month and year. The
first part of the program uses the data to fill up the PRICE
array. The second part of the program sums up the prices for
each month during 1979 and calculates the average 1979 price.

We could as well calculate the average price for a particular
month. For example, the following calculates the average price
in February:

TOTAL:-0;
FOR YEAR:-1978 TO 1980 DO

TOTAL:-TOTAL+PRICE[YEAR,2];
WRITELN(' AVERAGE FEB. PRICE:',ROUND(TOTAL/3));

We could calculate the average price for the entire three-year
period as follows.

TOTAL:-0;
FOR YEAR:-1978 TO 1980 DO

FOR MONTH:-1 TO 12 DO
TOTAL:-TOTAL + PRICEI YEAR,MONTH] ;

WRITELN(' OVERALL AVERAGEROUND(TOTAL/36));

This example has illustrated the use of two-dimensional
arrays. It is possible to use arrays with three and more
dimensions. For example, our consumers' group might want to
record prices for five grades of processed wallalumps (that makes
one dimension), for three years (that makes two dimensions), for
each month (that makes three dimensions). The array declaration

VAR PRICE: ARRAY[1 . .5, 1 978.. 1 980, 1..1 2] OF INTEGER;

would set up a table to hold all this data.

96 PS/4: Arrays

SUBRANGE TYPES

When we are programming we often find that we are using a
particular limited set of values. In the wallalump example, we
were interested in the values 1978, 1979 and 1980, because those
are the years of the survey. The variable YEAR is declared as an
INTEGER, but it only holds the values 1978 to 1980. The first
index of the PRICE array is restricted to be 1978 to 1980. We
say 1978 to 1980 is a subrange of the integers and in Pascal we
write this subrange as 1978.. 1980. The two dots can be read as

to .

Instead of declaring YEAR to be an INTEGER, we could be more
precise and declare it as a subrange. The declaration becomes

VAR PRICE; ARRAY[1978 . . 1 980 , 1..12] OF INTEGER;

MONTH: 1..12;
YEAR: 1 978 . . 1 980 ;
TOTAL: INTEGER;

As you can see MONTH has been declared to have only values 1 to
12. We call 1..12 a subrange type; it is a subset of the type

called INTEGER.

This change in the declaration does not effect the program,
it still calculates and prints the same thing. But the new
declaration is better than the old because it tells someone
reading the program a lot about the MONTH and YEAR variables.
Without looking beyond the declaration we know the small set of
values that will be given to the two variables. This means it is
easier to read and understand the program; when programs start
getting long and complex, it is important to keep them as
understandable as possible. Besides helping the reader, the new
declaration may help the compiler to do a better job in
translating the program; since it knows more about MONTH and
YEAR, it may be able to produce a faster or smaller machine
language program from the Pascal program. And when we use ranges
the computer can help us locate errors; for example, if YEAR has
a range of 1 978 .. 1 980 but is accidently assigned the value 93482,
the computer can warn us of the problem.

We do not declare TOTAL to be a subrange because we do not
know much about its values. They are read from the data and do
not fit neatly into subranges, like the twelve months of the year

do.

For this Pascal subset, PS/4, each array index must be an
integer subrange, such as 1..12. In the next subset we will see
that there are subranges of other types that can be an array
index, for example, 'A'..'D', means the subrange of characters
that are 'A','B','C' and 'D'.

A rrays of A rrays 97

NAMED TYPES

You probably noticed that the declaration of the PRICE array
contains the same subranges 1978.. 1980 and 1..12 used for YEAR
and MONTH. Rather than repeating these subrange types, we can
give them names.

TYPE MONTHTYPE-1..12;
YEARSPAN-1978..1980;

VAR PRICE: ARRAY[YEARSPAN,MONTHTYPE] OF INTEGER;
MONTH; MONTHTYPE;
YEAR: YEARSPAN;
TOTAL: INTEGER;

MONTHTYPE and YEARSPAN are named types. It is useful to name a
type, such as a subrange, when it will be used in many
declarations. This small example does not have very many
declarations, but you can see the idea.

In general any type can be given a name and this type name
can be used in following declarations. For example, we could
give a name to the type ARRAY[YEARSPAN,MONTHTYPE] OF INTEGER and
then declare PRICE using this type name.

In a Pascal program we give declarations in this order; the
named constants, the named types and then the variables. For
example, here are our declarations again, this time with names
given to the beginning and ending years.

CONST FIRSTYEAR-1978;
LASTYEAR-1980;

TYPE MONTHTYPE«1..12;
YEARSPAN- FIRSTYEAR..LASTYEAR;

VAR ..(as before)..

Suppose we modify our program to use FIRSTYEAR where it uses
1978, LASTYEAR where it uses 1980, LASTYEAR-FIRSTYEAR+1 where it
uses 3 and 12*(LASTYEAR-FIRSTYEAR+1) where it uses 36. Our
program still works as before. But now it can be easily changed
to handle another year's data, by simply changing the definition
of LASTYEAR to

LASTYEAR-1981 ;

This sort of flexibility is important because it makes it easier
to keep programs up to date.

ARRAYS OF ARRAYS

Pascal allows us to have arrays of any type including INTEGER
and REAL. Since any array itself is a type, we can have an array
whose parts are another array. This sounds confusing but an

98 PS/4: Arrays

example should make it clear. If we have a year's data, say
month by month prices, then we can place these in an array;

TYPE YEARSDATA-ARRAY[1..12] OF INTEGER;
VAR THISYEAR: YEARSDATA;

The twelve prices for one year can be recorded in the THISYEAR
array. But if we are interested in three years, we can use

TYPE YEARSDATA-ARRAYl1..12] OF INTEGER;
VAR PERIOD; ARRAY I 1 978 . . 1 980] OF YEARSDATA;

PERIOD contains all the data for the three years and PERIOD!1979]
contains the data just for 1979. The data for February 1979 is
held in PERIOD[19791[2]. This is equivalent to our old variable
called PRICE where the same data was in PRICE[1979,21. In the
case of period!19791[21 we use the first index !1979] to pick a
year's array of data and the second !2] to pick a month within
the year. With PRICE!1979,21 we choose the year and month at the
same time with the index pair ! 1979,2).

The only advantage of using the PERIOD array instead of PRICE
is that with PERIOD we can deal with an entire year at a time.
Pascal allows arrays to be assigned, so if we want to set the
prices in 1980 to be the same as those in 1979, we can change all
12 month values by writing the assignment

period! 1 980 1 ;-period! 1 979) ;

With PRICE we would have to write a loop to copy the 12 values
one at a time. Although arrays can be assigned, they cannot be
compared, so we are not allowed to write
PERIOD!19781-PERIOD!19791 to test if the 1978 prices are the same
month by month, as the 1979 prices.

ARRAYS AS DATA STRUCTURES

We have spoken of structured programming and shown how

control flow is structured in a program. Now we can speak of the

structure of data. Giving variables identifiers that are

meaningful has been the only way we could systematize data so

far. But with arrays we find that data can be structured or

organized into one-dimensional forms called lists, or two-

dimensional forms called tables. We can use even higher¬

dimensional arrays when we need them.

When we approach a problem and want to solve it by creating a

computer program we must decide on the data structures we will

use. We must decide in particular whether or not we need to

establish arrays for any of the data, or whether single variables

will serve us well enough.

O th er Da ta S true tures 99

Arrays will be useful whenever we must store groups
similar pieces of information. They are not necessary when sma
amounts of information come in, are processed, and then go out.

of
11

OTHER DATA STRUCTURES

Just SO that you do not
arrays are the only kind of data
mention a few others.

One common structure is the
to think of a tree is to imagine
being called chauvinists we w
the tree and talk of fathers and

think that single variables and
structures we can have, we will

tree structure. The easiest way
a family tree. At the risk of
11 show only the male members in
sons. This keeps it simple.

i

TREE STRUCTURE

The diagram shows a
sons, the second one
the root of the tree.
The lines joining the
themselves are nodes.

man with three sons. The first son has two
son, the third three. The grandfather is

The tree is of course growing upside down,
relatives are called branches; the people

The data we might store could be the names of the people, and
the tree structure would have to be stored also. The way it is
done is to have links or pointers stored with the data to give
the structure. Each father entry requires a link to each of his
sons .

A list can also be arranged with elements and links instead
of in an array. This means that some of the information stored
is used to describe the data structure and some to give the data.
With arrays, the structure is given by the fact that one element
follows right next to the preceding element. It does not need a
link.

Later we will be invest!
detail. Often we will use the
structures like trees or lis
another.

gating
array

ts with

other data stru
structures to
links from one e

ctures in
implement
lement to

100 PS/4: Arrays

CHAPTER 7 SUMMARY

This chapter has introduced array variables, which are used
for manipulating quantities of similar data. An array is made up
of a number of elements, each of which acts as a simple, non¬
array variable. The following terms are used in describing
arrays and their uses.

Array declaration - sets aside memory space for an array. For
example, the declaration

VAR COST: ARRAY[1..4] OF REAL;

sets aside space for the array elements C0ST[1], C0ST[2],
C0ST[3] and C0ST[4]. Each of these elements can be used like
a simple, non-array REAL variable.

Array index (sometimes called array subscript) - used to
designate a particular element of an array. For example, in
COSTlI], the variable I is an array index. An array index
can be any arithmetic expression that has an integer value.

Array bounds - the range over which array indexes may vary. For
example, given the declaration

VAR PRICE:array! 1 978 .. 1 980 , 1..12] OF INTEGER;

an array element of PRICE can be specified by PRICE[Y,M],
where M can range from 1 to 12 and Y can range from 1978 to
1 980 .

Out-of-bounds index - an array index which is outside the bounds
specified in the array's declaration. This is an error.

Subrange type - a type such as 1 978.. 1 980 that specifies a
subrange of another type. 1 978.. 1 980 is a subrange of the
type INTEGER.

Named" type - any type, for example, 1..12, can be given a name
and then used in declarations. INTEGER, REAL and BOOLEAN are
predeclared named types.

Multiply-dimensioned arrays - arrays requiring more than one
index, such as the PRICE array given above.

Arrays of arrays - these are similar to multidimensioned arrays.
Each index is written in its own square bracket, for example
PERIOD[1 978 1 [2] rather than PRICE[1 978,2] .

Exercises 101

CHAPTER 7 EXERCISES

1. Write a program that will read in the length of a one¬
dimensional array then read the array itself. It is then to
replace each element of the array by the sum of all elements up
to and including that element and then output the resulting
array.

2. Set the values of the elements of a two-dimensional integer
array that has the same number of rows as columns so that the
diagonal elements are all +1 and the off-diagonal elements -1.
Read in an integer giving the size of a subset of the array and
print out the subset array one row to a line. You should limit
the size to a maximum of 8x8.

3. In mathematics, two one-dimensional arrays of equal length
may be multiplied together. The product (sometimes called the
scalar product of two vectors) is the sum of the products of
corresponding elements in the two arrays. If one array is named
A and the other B then the scalar product is the sum for I going
from 1 to the length of the array of terms of the form

A[I] *8 11]

Write a program to find the scalar product of two one-dimensional
arrays. Read in the length of the arrays as a variable.

4. In mathematics, two matrices may be multiplied together if
the number of columns of the first matrix is equal to the number
of rows of the second. The product is a matrix. If we have a
matrix A with L rows and M columns and a matrix B with M rows and
N columns the elements of the product matrix C are given by the
relation

C[I,J] ■ sum for K going from 1 to M of A[I,K]*B[K,J]

Write a program that reads values of L,M,N then reads in matrices
A and B computes matrix C and prints it out. Limit the values of
L,M, and N to be 8 or less and use two-dimensional integer arrays
to represent the matrices.

‘ y IM i

Id *1^%. ♦

■V. - I

I - I i

7 i

S'^l.

' .*• 1 ^ •*
f '■ 4«- tl.' •

»> S « a «

n * . ‘ » f » / J * *1^

■'1 • .j .* ••- . • r > - -
r ' A ‘ ^ ^ 4

-> . r ' #1» » •: • / •' ' ‘ »
I * >1 ^ -ft* Y* } r* ■ i .. a. ■

4 t f I |r ■■-•■' i ■♦» f 4

••■'*■ ‘ - •.' T *■,

t < i -. . * •

4^ t« . * r»V • ',A
‘’Huff J■.•’47 •'^

•' : * .1 « «.i • Mt f ‘ T />w

'ai^i‘ --• V ‘-t Alii -14

' < a a 4*f a i-., aa ♦ * f
. P- 4 «»'•» **11 *9 nS;f4^. -4^ 4i

• . - • ’ *4.. .a '

t I
« * • ' -« • t * s ,.

P f ■ t . '. 4 I

« • ' » A » ' -* s • > I ’. 4 » *. a'« » 4 M !

1
■ » •* 5 *•« 1

. ' fcl

? y •

f • * 'A * > } '

’ V . . i i

a ^ /

* ^ * i ~

a ' * ' !> "ilfcai i4 ?» '?

t «^'3-4al' * *1 • t
h >•* 4^-» . ■.?;ii

« i * « 1 ; »*4.ki. V

i
4 •» ..

\ 4

j ► ’

f • • s

I

■d# 4 r.
14 I'.’ «

I'tt » 14

* •
: b

. , . ' r ' 4 •» , 1
#%4! nfi'sorn lA nfiijiTi-i

»4.m ' ► > 4 tsam ^
■• ' f ^ a.ti. ’, .4

1»t * l«« :«fl.* . V

•■.0-i 'p t;

> ■'4-4 ^

f ♦ _

♦ *

Chapter 8
PS/5: ALPHABETIC
INFORMATION HANDLING

We have said that computers can handle alphabetic information
as well as perform numerical calculations. But most of the
emphasis so far, except for labeling our tables of numerical
output, has had very little to do with alphabetic data handling.
It is true that we have been dealing with words, like
identifiers, but these have been in the Pascal programs rather
than being handled by them as data. We have, in fact, never had
anything but numbers, either real or integer, on the data cards
following the $DATA control card. In this chapter we will learn
how to read in alphabetic data from data cards, how to move it
from one place to another in the memory of the computer, how to
join different pieces of information together, and how to
separate out a part of a large piece of information.

CHARACTER STRINGS

The term "alphabetic information" that we used in the last
section is really not general enough to describe what we will
learn to handle in this subset of Pascal. It is true that we
will be able to handle what you normally mean by alphabetic
information, things like people's names

SARAH MARIE WOOD

but we also want to handle things like street addresses. For
example, an address like

2156 CYPRESS AVENUE

includes digits as well as letters of the alphabet. This kind of
information we call alphanumeric or alphameric for short. But
that is not all; we want to handle any kind of English text with

103

104 PS/5: Alphabetic Information Handling

words, numbers, and punctuation marks, like commas,

and question marks.

THIS TEXT CONTAINS 7 WORDS; DOESN'T IT?

We have defined a word as being a string of
characters preceded and followed by a blank or a
mark, other than an apostrophe. This definition ma

The information we want to handle is any string
that may be letters, digits, punctuations marks or
tend to think of a blank as being not a character,
of blanks is quite different from a string with no c
all. We call the special string with no characters
string. We often write b for the blank character so
count how many blank characters are in a string.

HEREbISbAbCHARACTERbSTRINGbSHOWINGbTHEbBLANKSbEXPLICITLY.

In Chapter 3 we introduced the characters in the Pascal
language. In that listing there are more than we have referred
to so far in this chapter. The list of special characters
includes symbols we need for arithmetic operations +, “, /, *,
as well as for making comparisons in logical conditions >, <, ■.
Then often we used parentheses of two kinds, not to mention the

characters like ; : and ,

One reason we want to be able to handle
these characters is to be able to work with
themselves as data. This is the kind of job a
and a programming language like Pascal should
writing a compiler program.

READING AND PRINTING CHARACTERS

We can use variables that hold characters in much the
way that we have been using variables to hold integer and
numbers. If we need to store a letter, which is a character

can make the declaration

VAR LETTER: CHAR;

CHAR is a new type. We can put the value which is letter H into
the LETTER variable by the assignment statement

LETTER:-'H';

We now write out the value of LETTER by

WRITE{LETTER);

This causes the 'H' to be printed. Here is a program that prints

HI.

same
real
, we

strings of any of
Pascal programs

compiler must do,
be suitable for

semicolons,

one or more
punctuation

kes 7 a word.

of characters
blanks. We
but a string

haracters at
at all a null
that you can

Reading and Printing Characters 105

PROGRAM FRIENDLY(INPUT,OUTPUT);
VAR LETTER: CHAR;
BEGIN

LETTER:-'H';
WRITE(LETTER);
LETTER:-'I ' ;
WRITE(LETTER)

END .

This is a rather clumsy way to do the same thing that is done by
the statement WRITE('HI'). But CHAR variables provide us with
the ability to read and manipulate character values.

We can read in the data character by character and print it
out. We can use READ(LETTER) to read the next character in the
data into LETTER. Reading a character is not like reading a
number in that blanks are not automatically skipped. This is
because a blank is a legitimate character just like other
characters such as Q and *.

Here is a program that reads and prints characters until it
finds a period.

$JOB 'ALAN ROSSELET'
PROGRAM ECHO(INPUT,OUTPUT);

VAR CHARVALUE: CHAR;
BEGIN

REPEAT
READ(CHARVALUE);
WRITE(CHARVALUE)

UNTIL CHARVALUE-'.'
END.

$DATA
HOW DO YOU DO,

This program prints its input data, namely

HOW DO YOU DO.

Notice that the characters such as blank and period are treated
the same way as letters. In the UNTIL test, CHARVALUE is
compared to period. A single character, such as 'Q' or '.' can
be assigned or compared to a CHAR variable. But a string with
more that one character, such as 'ABC' would not be allowed.

Now if you think about it, HOW DO YOU DO is really a question
and deserves a question mark at the end not a period. So we will
modify our program to put on the question mark.

106 PS/5: Alphabetic Information Handling

$JOB 'KIRSTEN DOUGLAS'
(♦ PRINT LINE TO PERIOD, CHANGE PERIOD TO '?' *)
PROGRAM QUESTION(INPUT,OUTPUT);

VAR LINE: ARRAY[1..80) OF CHAR;
LENGTH,I: 0..80;

BEGIN
LENGTH:-0;
REPEAT (* READ INTO LINE ARRAY *)

LENGTH:-LENGTH+ 1 ;
READ(LINE[LENGTH])

UNTIL LINE[LENGTH 1 - ' . ' ;
LINE[LENGTH]; (* MAKE QUESTION *)
FOR I:-1 TO LENGTH DO

WRITE(LINE I I]) ;
WRITELN; (* FINISH LINE *)
WRITELN(' THE LENGTH WAS',LENGTH:4)

END.
$DATA

HOW DO YOU DO.

As you can
version did.

see, this program does more things than the first
This one prints.

HOW DO YOU DO?
THE LENGTH WAS 1 5

There was a blank in front of HOW,
14 as you might have thought.

so the length is 15 instead of

Although it was not necessary for this example, we read all
the characters into an array before printing any. The program
shows how an array ot characters can be used to hold a line of
text. We have assumed that the line is at most 80 characters
long, as is certainly the case if they fit on a single punch
card. Often we have a string of characters stored in an array
with a separate variable, LENGTH in this case, to keep track of
how many characters are of interest.

READING AND PRINTING LINES

In this book we often talk of the data as being punched on
cards. This is because traditionally many computer systems have
used punch cards (IBM cards) to hold both programs and data. But
more and more this is changing, especially with minicomputers and
microcomputers, where data and programs more likely are stored on
magnetic tapes or disks.

Fortunately we do not need to be concerned with whether we
are reading from cards or tape or disk because the same Pascal
statement READ works for them all. But the terminology sometimes
gets confusing, and in this chapter we will often talk of input
lines instead of data cards because Pascal has special features
called READLN (read line) and EOLN (end of line).

Detecting End-of-FHe 107

In the last example we were able to find the end of the
string of characters because it ended with a period. But usually
there is not a predictable character at the end of a line. If we
knew the number of characters in the line of data, we could have
our program count them to determine the end. In some computer
installations the input data is on cards and is guaranteed to
contain exactly 80 characters per line. In such a situation, the
program can read a line by counting the 80 characters.

But we should avoid counting this way for two reasons.
First, even in installations that use cards, it is common to trim
off some or all of the blanks on the right side, so the length is
usually less than 80. Second, if the data is typed into a
computer terminal, each line is ended when "carriage return" is
typed, and lines are of varying lengths.

Pascal provide
been reached, by
Usually EOLN is
characters to be r
print a line while

s a way to determine if
EOLN, the end-of-line
false, but becomes true

ead on a line. Here we
counting the characters

the end of the line has
predeclared function,
when there are no more
use it to read and

LENGTH:-0 ;
WHILE NOT EOLN DO

BEGIN
LENGTH:-LENGTH+1;
READ(CHARVALUE);
WRITE(CHARVALUE)

END;
WRITELN;
WRITELN(' THE LENGTH WAS',LENGTH)

This works even when there are zero characters on the line, which
is the case with terminal input when "carriage return" is the
first thing typed on the line.

DETECTING END-OF-FILE

Now that we have Pascal statements to read and print a single
line, we can enclose them in a loop to read all the input data
lines (or cards).

108 PS/5: Alphabetic Information Handling

$JOB 'WENDY PIITZ'
(* PRINT THE DATA AND COUNT THE LINES *)
PROGRAM COPY(INPUT,OUTPUT);

VAR LINECOUNT: INTEGER;
CHARVALUE: CHAR;

BEGIN
LINECOUNT:-0;
WHILE NOT EOF DO

BEGIN
LINECOUNT;-LINECOUNT+1;
WHILE NOT EOLN DO

BEGIN
READ(CHARVALUE);
WRITE(CHARVALUE)

END ;
READLN; (* GET READY TO READ NEXT DATA LINE *)
WRITELN CLOSE OFF PRESENT PRINTED LINE *)

END ;
WRITELN;
WRITELN(LINECOUNT,' LINES READ')

END .
$DATA

MAN IS NATURALLY CREDULOUS AND INCREDULOUS,
TIMID AND RASH. (BLAISE PASCAL 1660)

We have used two new Pascal features in this example, EOF and
READLN.

EOF is a predeclared function that is much lilce EOLN, but
tells when the end-of-file has been reached. Usually EOF is
false, but when there are no more characters in the file of data
it becomes true. Notice that our program wor)cs correctly even
when there are no lines of data because EOF is tested before any
reading or printing is done.

READLN is used when we want to begin reading the next line of
data. When EOLN becomes true, then READLN is called so the first
character of the next line can be read. If EOLN is not true,
which means that there are more characters on the current data
line, then READLN skips the rest of the characters on the present
line and then goes to the next line.

USING EOF WHEN READING NUMBERS

Up to now, when we have read lists of numbers, we have
detected the end of the list by either counting numbers or having
a dummy number such as -1 at the end. Instead of using a dummy
number, we can use EOF, but we have to be careful. This example
is supposed to compute the sum of a list of numbers:

Using EOF When Reading Numbers 109

(* THIS DOES NOT WORK CORRECTLY ♦)
SUM:-0;
WHILE NOT EOF DO

BEGIN
READ(NUMBER);

SUM:-SUM+NUMBER
END;

The EOF test is not right because there may be blanks after the
last number. If so, EOF remains false, because more characters
(blanks) can be read, and we try to read another number. But
there is no number to read. This is an error and will be handled
differently by various computer installations. We want our
program to be correct on any installation, so we will rewrite it.

We will assume that there is at least one number (not zero
numbers); this simplifies the program. We also assume that there
is a single number on each line (or card) and that there are no
blank lines following the line containing the last number.

(* READ AND SUM ONE OR MORE NUMBERS *)
SUM:-0;
REPEAT

READLN(NUMBER);
SUM:-SUM+NUMBER

UNTIL EOF

When READLN has parameters such as NUMBER, it first reads in the
values, just like READ, and then skips to the beginning of the
next data line. So READLN(NUMBER) is equivalent to READ(NUMBER)
followed by READLN.

Since the last number is on the last data line, READLN for
the last number skips any blanks following the number and causes
EOF to become true.

You have to be careful when using READLN. For example, if
there are three numbers on a line and READLN(NUMBER) reads the
first pne then the other two will be skipped. We could use
READLN(N1,N2,N3) instead to correctly read the three numbers into
N1, N2 and N3. Or we could equivalently use

READ(N1);
READ(N2);
READ(N3);
READLN

What all this means is that EOF can be used to detect the last
number, but it is not as simple as we might hope. And when the
list might contain zero numbers it is very tricky.

110 PS/5: Alphabetic Information Handling

USING STRINGS OF CHARACTERS

We have seen how a line of data can be read a character at a
time into the LINE variable declared by the type ARRAY[1..80] OF
CHAR. Since arrays can be assigned, if we had another variable
declared like LINE, we could assign one to the other, and move
the whole string. But we cannot compare these arrays or print
them out except a character at a time. We can print the whole
string of characters HELLO simply by using WRITE('HELLO'). But
we do not yet have a way to print a whole string when it is in an
array.

In Pascal we use packed arrays of characters when we want to
compare or print the whole array, for example

PROGRAM AMICABLE(INPUT,OUTPUT);
VAR GREETING: PACKED ARRAY[1..9] OF CHAR;
BEGIN

GREETING:-' GOOD-BY (* BLANKS BEFORE AND AFTER *)
WRITELN(GREETING)

END.

The literal string ' GOOD-BY ' is 9 characters long, including
both blanks, so we can assign it to GREETING. We can use a
packed array like an ordinary one. GREETING!1] holds a blank,
greeting!2] holds a G and so on. If we put this before the
WRITE:

greeting!91 :- ' E ' ;

then GOOD-BYE is printed with an E on the end.

We are allowed to assign or compare a literal string such as
' GOOD-BY ' to a packed character array only if the number of
characters is exactly the same, 9 in this case. Note that this
literal string contains two blanks as well as a hyphen.

The range of a packed character array must begin with 1, as
in 1..9, and must end with 2 or more.

COMPARISON OF STRINGS FOR RECOGNITION

To compare two strings they should be of the same length and
be stored as PACKED ARRAYs. We need to be able t^ compare one
strfing withanother for two purposes, to recognize them and to
put them in order. To recognize a string we see if it is the
same as some other string. String comparisons are made in
Boolean conditions since their result is either true or false;
the strings are the same or they are not. Here is a program that

Comparison of Strings for Recognition 111

reads and prints words until it reaches the word STOP. Remember
that to compare an array representing a string with a literal
string the array must not only be the same length as the literal
but be declared as a PACKED ARRAY since in fact literal strings
are stored as packed arrays.

We will assume that each word we read has at most 10
characters and will chop any longer than that to 10.

$JOB 'JOHN GUTTAG'
(* READ AND PRINT WORDS UNTIL 'STOP' IS FOUND *)
PROGRAM READING(INPUT,OUTPUT);

CONST MAXLENGTH-10;
VAR WORD: PACKED ARRAY[1..MAXLENGTH] OF CHAR;

LENGTH: 0..MAXLENGTH;
COUNT: INTEGER;

BEGIN
COUNT:-0;
REPEAT

COUNT:-COUNT+1;
LENGTH:-0;
WHILE(NOT EOLN)AND(LENGTH<MAXLENGTH) DO

BEGIN
LENGTH:-LENGTH+1;
READ(WORD[LENGTH 1)

END;
READLN;
WHILE LENGTH<MAXLENGTH DO

BEGIN
LENGTH:-LENGTH+1;
WORD[LENGTH]:-' '

END;
WRITELN(WORD)

UNTIL WORD-'STOP
WRITELN(COUNT:5,' WORDS READ')

END.
$DATA
SOUP
SLOW
SIP
STOP
SIT

The output will be

SOUP
SLOW
SIP
STOP

4 WORDS READ

712 PS/5: Alphabetic Information Handling

We had to put six blanks in the STOP to make it 10 characters
long so we could compare it to WORD. After reading each word we
had to fill in the rest of the WORD array with blanks. Otherwise
the WRITELN would print unpredictable characters to the right of
each word, and the comparison with 'STOP ' would not work.
If there were no word STOP in the data the computer would inform
you of an end-of-file error, as your program would just run off
the end of the list of words without testing for EOF.

This example shows that packed characters can be printed and
compared as a whole. But Pascal provides no way to read the
whole array at once so we must do it a character at a time.

SEQUENCING STRINGS

The other use of string comparisons is to sequence strings,
to put them in order. Usually we speak of alphabetic order for
alphabetic strings.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The alphabet and digits have the normal order among themselves; 0
comes before 9, A comes before Z. The operators > and < are used
to compare the strings. The two strings being compared must be
of equal length. The following program reads in 10 names and
prints out the one that is the last alphabetically. To do this
we must be able to compare each string that is read in with the
string that is presently the last alphabetically and replace the
current final name if the latest one is greater alphabetically.

The names
column 1.

to be examined are put one to a card starting in

Handling Arrays of Strings 113

$JOB 'LAURIE JOHNSTON'
(♦ PRINT ALPHABETICALLY LAST NAME IN DATA *)
PROGRAM LAST(INPUT,OUTPUT);

CONST MAXLENGTH-15;
BLANKS-'
ALPHABETICFIRST-'AAAAAAAAAAAAAAA';

VAR NAME,FINAL: PACKED ARRAY[1..MAXLENGTH1 OF CHAR;
LENGTH: 0..MAXLENGTH;

BEGIN
FINAL:-ALPHABETICFIRST;
WHILE NOT EOF DO

BEGIN
NAME:-BLANKS; ^
LENGTH :-0;
WHILE(NOT EOLN)AND(LENGTH<MAXLENGTH) DO

BEGIN
LENGTH:-LENGTH+1;
READ(NAME[LENGTH])

END ;
READLN;
IF NAME>FINAL THEN

FINAL:-NAME
END ;

WRITELN(' ALPHABETICALLY LAST IS: ',FINAL)
END.

$DATA ^
HORNING ^
TSICHRITZIS
WORTMAN
GOTLIEB

This program will output

ALPHABETICALLY LAST IS: WORTMAN

Notice the way that the blanks are placed in the array NAME
before the characters are read in. This effectively pads the
name read in, on the right with blanks, to bring it to the
standard length of 15 characters.

HANDLING ARRAYS OF STRINGS

Suppose you wanted to read in a list of names of 50 students
and print them out in reverse order, that is, last first. We
would need to read in the entire list before we could begin the
printing. This means we must have a memory location for each
name. We must be able to reserve this space by a declaration.
We would need an array of memory locations each one of which is a
packed array of characters. It is an array of string variables.
For the list of names of students we would use the following:

114 PS/5: Alphabetic Information Handling

TYPE NAMETYPE-PACKED ARRAY[1..20 I OF CHAR;
VAR STUDENT: ARRAY[1..50] OF NAMETYPE

Each student's name is stored in a character string variable
whose length is 20.

We are now ready for the program that reverses the order of a
list of names. Here the array index is an integer variable I.

$JOB 'LES MEZEI'
(♦ READ 50 NAMES AND PRINT IN REVERSE ORDER ♦)
PROGRAM REVERSE (INPUT,OUTPUT);

CONST MAXLENGTH-20;
MAXNAMES-50;

TYPE NAMETYPE-PACKED ARRAY[1..MAXLENGTH] OF CHAR;
VAR STUDENT: ARRAY[1..MAXNAMES] OF NAMETYPE;

I: 1..MAXNAMES;
J: 0..MAXLENGTH;
BLANKS,NAMETEMP: NAMETYPE;

BEGIN
(♦ READ LIST OF NAMES *)
FOR J:-1 TO MAXLENGTH DO

BLANKS[J1:-' ';
FOR I:-1 TO MAXNAMES DO

BEGIN
J : - 0 ;
NAMETEMP:-BLANKS;
WHILE (NOT EOLN) AND (J<MAXLENGTH) DO

BEGIN
J:-J+1 ;
READ(NAMETEMP[J])

END;
READLN;
STUDENT[I]:-NAMETEMP

END ;
(♦PRINT REVERSED LIST *)
FOR I:-MAXNAMES DOWNTO 1 DO

WRITELN(student!I])
END.

$DATA
(list of 50 names, one to a line)

Again you can see what a powerful programming tool the
indexed variable can be. The index I that is counting the loop
is used to refer to the different members of the list. In the
first FOR loop the names are read in character by character and
padded on the right with blanks; the first is stored in the
variable STUDENT!1], the second in STUDENT!2], and so on. In
contrast, the first iteration of the printing loop outputs
student!50], the next STUDENT!49], and so on. Note again that we
must read strings character by character but can print them as a
unit.

An Example Program 115

We have set NAMETEMP to blanks, read each character in a name
into NAMETEMP[J1 and then assigned all of NAMETEMP to STUDENTll].
We could eliminate NAMETEMP and use STUDENT directly. We would
set student!I] to blanks and read each character directly into
STUDENT[I][J], where STUDENT(I][J] means character number J of
the string STUDENTll].

AN EXAMPLE PROGRAM

Sometimes a table has different types of information in
different columns. To use a two-dimensional array we must have
every element of the same type. Instead we use a number of one¬
dimensional arrays, one for each column of the table. We will
now give an example in which the table is the timetable for
teachers in a high school. The timetable has been prepared as a
deck of cards. Each card has a teacher's name left-justified in
columns 1 to 14, a period (1 to 6) and a room number.

The cards look like the following:

{teacher)
MS, WEBER
MRS. THOMPSON
MRS. JACOBS
MS. WEBER
MRS. REID

(period)
1
6
1
4
2

(room)
2 1 6
2 1 4
103
200
2 1 6

A program is needed to print out the timetable in order of
periods. First, all teachers with their classrooms for the first
period should be printed; then all teachers with their classrooms
for period 2 and so on up to period 6. The output from the
program should begin this way:

PERIOD 1
MS. WEBER 216
MRS. JACOBS 103

The following program produces this output:

716 PS/5: Alphabetic Information Handling

1
2
3
4
5
6
7
8
9

10

1 1
12
1 3
1 4
1 5
1 6
1 7
18
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

(♦ PRINT TIMETABLE PERIOD BY PERIOD *)
PROGRAM PERIODS(INPUT,OUTPUT);

CONST MAXLENGTH-17;
MAXENTRIES-50;
LASTPERIOD-6;

TYPE NAMETYPE-PACKED ARRAY[1..MAXLENGTH] OF CHAR;
VAR TEACHER: ARRAY[1..MAXENTRIES] OF NAMETYPE;

PERIOD: array!1..MAXENTRIES] OF 1..LASTPERIOD;
ROOM: array!1..MAXENTRIES] OF INTEGER;
THISPERIOD: 1..LASTPERIOD;
I,HOWMANY: 0..MAXENTRIES;
N: 1..MAXLENGTH;

BEGIN
(♦ READ TIMETABLE *)
HOWMANY:-0;
WHILE NOT EOF DO

BEGIN
HOWMANY:-HOWMANY+1;
FOR N:-1 TO MAXLENGTH DO

READ(TEACHER!HOWMANY]!N]);
READLN(PERIOD!HOWMANY],ROOM!HOWMANY])

END ;
(* PRINT TIMETABLE BY PERIODS ♦)
FOR THISPERIOD:-1 TO LASTPERIOD DO

BEGIN
WRITELN(' PERIOD ',THISPERIOD);
FOR I:- 1 TO HOWMANY DO

IF PERIOD!I]-THISPERIOD THEN
WRITELN!' ',TEACHER!I],R00M!I])

END
END.

The first loop in this program reads in the cards
representing the timetable. Note that because the alphabetic
information of the teachers' names is followed by the integer
information we do not have to be looking for the end-of-line mark
as we read the character string. Nor do we need to pad the name
with blanks; the blanks will be read from the card.

Our program is able to read in a timetable consisting of at
most 50 cards. If there are more than 50 cards in the timetable,
then line 18 will eventually set HOWMANY to 51; this value of
HOWMANY will be used in lines 20 and 21 as an index for the
TEACHER, PERIOD and ROOM arrays. This would be an error, because
the declarations specify that 50 is the largest allowed array
index. The problem is that the index is out of bounds in line 18
when I exceeds 50. You should try to take care that array
indexes in your programs stay within their declared bounds.

The next three sections discuss more advanced programming
ideas, namely number conversion, scalar types and enumerated
types. Some readers may choose to skip these sections altogether
or return to them later.

Converting Between Characters and Numbers 117

CONVERTING BETWEEN CHARACTERS AND NUMBERS

When a program prints a number using WRITE, the number is
converted to the characters that are printed. And READ takes
characters on an input line (card) and converts them into a
number. These conversions are automatic in that the programmer
does not need to worry about how they are done. But sometimes it
is necessary to do these conversions explicitly, as the following
example shows.

Suppose there are numbers packed together on the input cards.
To save space no blanks appear between the numbers. We can tell
where one number ends and the next begins only because we know
the length of each number. In the case of printing the
highschool time table, we might have data in the form

1216MS. WEBER

The first "1" means period 1 then the next three digits mean room
216 and next comes the teacher's name. Pascal does not provide
an automatic method of reading numbers packed together like this;
but we can write a program that does the job.

We will use
character value to

the predeclared
a number value.

"ordinal" value, for ex
microcomputers we have

ORD('A') " 65
ORD(’B') - 66
• • •

ORD(' 0 ') ”48
ORD('1'
• • •

) - 49

Appendix 5 gives common v
collating sequences on vari^
computers do not use the
computers the letters 'A'
necessarily contiguous ORD va
increasing, contiguous values

function ORD that changes a
Each character has a unique

on most minicomputers and

ilues of ORD as determined by the
>us computers. Unfortunately all
same collating sequence. On most
to 'Z' have increasing but not

■ues, and the digits 'O' to '9' have

If we have a character variable C then we can read the first
digit of a line and convert it to a number this way

READ(C); (★ READ CHARACTER GIVING PERIOD *)
PERIOD:-ORD(C)-ORD('0')

We assign the
adjusted by the
adjustment is

integer variable PERIOD the ordinal
ordinal value of the character

value of
zero.

C as
This

necessary because for example 0RD('3') does not
equal 3, but ORD('3')-ORD('0') equals 3.

Once we have read the digit for
next three digits for the room number

the period,
this way.

we can read the

118 PS/5: Alphabetic Information Handling

ROOM:-0;
FOR I:-1 TO 3 DO

BEGIN
READ(C);
ROOM:-10*ROOM+ORD(C)-ORD('O')

END;

This starts with ROOM-0 and reads the character '2', for room
216. The first time through the loop 10*ROOM equals zero and so
ROOM takes the numeric value 2. The next digit '1' is read, and
ROOM is assigned the value 21. Finally the '6' is read and ROOM
ends as 216. The loop successively uses multiplication by 10 to
slide left the previously read digits in calculating the value of

ROOM.

In a similar but reverse manner, number values can be
converted to strings of characters. The predeclared function CHR
does the opposite of ORD; it changes a number to a character.
For example, if CHR(C) has the numeric value N then CHR(N) is
character C. If we have a number N whose value is in the range 0
to 9, we can convert it to the corresponding character this way.

C:-CHR(N+ORD('0'))

Note that before taking the CHR we must adjust N by the ordinal

of character zero.

If the number N is larger than 9, we can convert it to a

character string a digit at a time.

VAR D: ARRAY [1..101 OF CHAR;
• • •

FOR PLACE:"10 DOWNTO 1 DO
BEGIN

D[PLACE] :-CHR((N MOD 10)+ORD('0')) ;
N:-N DIV 10

END

This uses the MOD operator to find the rightmost digit of N and
puts this digit into the D array. The D array is successively
filled up from the right while N successively loses its rightmost
digit because of the division by 10.

CHAR AS A SCALAR TYPE

We have seen that integers can be used to control FOR loops,
to choose alternatives within case statements, and to index
arrays. For example, we can have

Char as a Scalar Type 119

VAR 1: 1. . 3 ;
A: ARRAY[1..3] OF INTEGER;

• • • •

FOR I:»1 TO 3 DO
A[I] ;-0 ;

• • •

CASE I OF
1: statement 1;
2: statement2;
3: statement3

END

Because of these uses we say integers are a scalar type.

The type CHAR is also a scalar type and we can have

VAR L: 'A'...'C’;
A: ARRAY['A'...'C'] OF INTEGER;

• • •

FOR L:«'A' TO 'C' DO
A [L] : - 0 ;

• • 9

CASE L OF
'A' : statement 1;
'B': statement2;
'C': statement3

END

The variable L can take values 'A', 'B' or 'C'. Similarly array
A and the CASE statement can be indexed by values 'A', 'B' or
'C ' .

We will give an example in which each data card gives a
student's name and a grade of A, B or C. The program reads the
names and grades. It prints a sentence about each student's work
and reports the number of A grades, B grades and C grades.

120 PS/5: Alphabetic Information Handling

(* READ AND TABULATE GRADES ★)
PROGRAM GRADING(INPUT,OUTPUT);

CONST NAMELENGTH-11;
VAR CLASSSIZE,STUDENT: INTEGER;

I: 1..NAMELENGTH;
NAME: PACKED ARRAY [1..NAMELENGTH] OF CHAR;

GRADE: 'A' . . 'C ;
COUNT: ARRAY['A'..'C'] OF INTEGER;

BEGIN
FOR GRADE:-'A' TO 'C DO

COUNT[GRADE]:-0;
READLN(CLASSSIZE);
FOR STUDENT:-1 TO CLASSSIZE DO

BEGIN
FOR I:-1 TO NAMELENGTH DO

READ(NAME[I 1) ;
READLN(GRADE);
WRITE(NAME);
CASE GRADE OF

'A': WRITELN('DID EXCELLENT WORK.');
'B': WRITELN('DID GOOD WORK.');
'C': WRITELN('DID FAIR WORK.')

END ;
COUNT I GRADE] :-COUNT[GRADE 1 + 1

END ;
WRITELN;
FOR GRADE:-'A' TO 'C DO

WRITELN(COUNT[GRADE],' STUDENT(S) WITH MARK ',GRADE)

END.
$DATA
3

R. MARTY B
R. SCHILD A
M. GREEN B

For the data shown this program prints

R. MARTY DID GOOD WORK.
R. SCHILD DID EXCELLENT WORK.
M. GREEN DID GOOD WORK.

1 STUDENT(S) WITH MARK A
2 STUDENT(S) WITH MARK B
0 STUDENT(S) WITH MARK C

Unfortunately, the letters 'A' to 'Z' are not contiguous
values on some computers, notably computers using the IBM
standard EBCDIC collating sequence (see Appendix 5). On such

computers the loop

FOR L:-'A' TO 'Z' DO ...

executes more than 26 iterations, because of the non-printable
characters appearing in the middle of the alphabet. But many
computers including most minicomputers and microcomputers use the

Enumberated Types 121

ASCII collating sequence in which the letters are contiguous, so
the loop would execute 26 times, once for each letter. Although
we haven't shown it, many computer systems also allow lower case
letters 'a' to 'z' and these can be used as character values.

We have seen that CHAR values can be used much like INTEGER
values, because both CHAR and INTEGER are scalar types. But
arithmetic is not allowed for CHAR values. For example, if L is
of type 'A'..'Z', this is not legal:

L;"L+ 1 ;

This statement seems to mean to set L to the next character. We
can use the predeclared function SUCC to change L this way.

L:-SUCC(L);

For example, if L was '1', it becomes '2' or if L was 'A', it
becomes 'B'. Besides the successor function SUCC, there is a
predecessor function PRED. For example;

L:«PRED(L);

sets L to the preceding character value. Conceptually, SUCC adds
one and PRED subtracts one. If I is an INTEGER then SUCC(I)
actually means 1+1 and PRED(I) means 1-1.

ENUMERATED TYPES

Sometimes we are interested in a particular small set of
items, for example, the 12 months of the year. It is customary
to represent the months as numbers, for example, January becomes
1, February becomes 2 and so on. Numbering members of a set in
this way is rather artificial although sometimes convenient.
Pascal provides a way of avoiding this numbering. We can define
a type which has the twelve months as values.

TYPE MONTHTYPE-(JAN,FEB,MAR,APR,MAY,JUNE,
JULY,AUG,SEPT,OCT,NOV,DEC);

VAR MONTH; MONTHTYPE;

Given these declarations, we can assign any month value to MONTH,
for example,

MONTH:-FEB;

We can write a FOR loop to be executed for each month, for
example:

FOR MONTH:-JAN TO DEC DO ...

and we can select case alternatives using months, for example

122 PS/5: Alphabetic Information Handling

CASE MONTH OF
SEPT,OCT,NOV,DEC: WRITELN('FIRST TERM');
JAN,FEB,MAR,APR: WRITELN('SECOND TERM');
MAY,JUNE,JULY,AUG: WRITELN('SUMMER TERM')

END

ause we give the
in th i s example,
types and we can
lect i on and FOR

be c ompared (-f

We say that MONTHTYPE is an enumerated type b
names for (we enumerate) each value of the type
JAN through DEC. Enumerated types are scala
use them for array indexes as well as for CASE
loop counters. Values of enumerated types c

Of >f "^f f) and assigned.

In the last chapter we had an example of a two dimensional
array to hold the prices of wallalumps each month for a period of
three years. That example can be re-written to use our new
definition of MONTHTYPE. In each FOR loop we must
12" to be "JAN TO DEC". Each month number must be
month name, for example, 2 is changed to FEB.

change "1
changed to

TO
the

We can have subranges of enumerated types, for example

VAR SUMMER: MAY..AUG;

SUMMER can take on the values MAY, JUNE, JULY and AUG
values, enumerated values can be used with ORD, SUCC,
for example:

ORD(JAN)-0
ORD(FEB)-1

Like CHAR
and PRED,

SUCC(JAN)-FEB
PRED(FEB)-JAN

Essentially, CHAR is a predefined enumerated type whose values
are the characters. Similarly, Boolean is a predeclared
enumerated type whose values are FALSE and TRUE. Unfortunately
there is no way to READ or WRITE programmer-defined enumerated
types.

In principle, we never need to
because we can use integers instead,
values, for example, we could define

CONST JAN:-0;
FEB:- 1 ;

define new enumerated types
And we can name integer

DEC:-11;

But defining a new enumerated type offers the following
advantages. First, it tells the reader of the program something
about its purpose and so helps understandabi1ity. For example,
when we see SEPT instead of 9 we immediately know that we are
dealing with a month. Second, enumerated values are restricted
in use, for example, if through some accident we write 3*SEPT,

Chapter 8 Summary 123

the compiler will tell us that this is nonsense. Similarly if we
accidently write

YEAR;-SEPT

where year is an integer, the compiler will catch the error.
This extra help from the compiler is possible because enumerated
types provide new, distinct sets of values.

There are many uses of enumerated values; here is a list of
some obvious enumerated types

TYPE RATING-(PRIME,ACCEPTABLE,REJECT);
NOTES-(DOH,RE,MI,FA,SO,LA,TI);
DAYS-(SUN,MON,TUES,WED,THURS,FRI,SAT);
SHOEWIDTH-(AAA,AA,A,B,C,D,DD,DDD);
SHIRTSIZE-(SMALL,MEDIUM,LARGE,XLARGE);
STAFFCLASS-(HOURLY,SALARIED,OFFICER);

CHAPTER 8 SUMMARY

In this chapter we have given methods of manipulating single
characters and strings of characters. The following important
terms were presented.

CHAR “ variables of type CHAR have chara
values. Character values can be assi
read and written. When a CHAR var
preceding blanks are not skipped, becaus
legitimate character.

cters as their
gned, compared,
iable is read,
e a blank is a

EOLN - this is a predeclared function that becomes true when
there are no more characters on the present input line
(card). When EOLN becomes true, READLN should be called
to prepare for reading the next line.

READLN - this is a predeclared procedure that
remaining characters, if any, on the present
prepares for the reading of the next line,
has a parameter, as in READLN(N), the parameter
read before READLN takes effect.

reads the
line and
If READLN
value is

EOF - this is
there are

a predeclared function that becomes true when
no more characters that can be read.

PACKED - when an ARRAY [1..n] OF CHAR is PACKED, where n is
at least 2, it can be compared, assigned or written as a
unit. Literal strings, such as 'HI' are considered to
be packed arrays of characters. Two packed arrays can
be compared or assigned only if they have the same
length.

Length
If

of a string - The number of characters in a string,
the length of a string to be stored in an array is

124 PS/5: Alphabetic Information Handling

less than the size of the array the string can be left-
justified in the array and padded on the right with
blanks. Its length then becomes equal to
the array and it can be compared with other
the same length.

the size
strings

of
of

String comparisons - used to test character
equality and for ordering. Strings of equal
be compared using the following operators;

strings for
length can

< comes before (less than)
> comes after (greater than)
<■ comes before or is equal (less than or equal)
>■ comes after or is equal (greater than or equal)
■ equal
<> not equal

In this chapter we also presented more advanced features, namely
number conversion, characters as scalar types and enumerated
types. These important terms were discussed:

ORD - this is a predeclared function that changes each
character value to a distinct number. (ORD also accepts
enumerated values and produces numbers.)

CHR - this is a predeclared function that is the
ORD. If C is a character then CHR(ORD(C))-C.

inverse of

Scalar type - these can have subranges and can be array
indexes, CASE selector expressions and FOR loop
counters. The following are scalar types: INTEGER,
CHAR, BOOLEAN and programmer-defined enumerated types.
(Technically, REAL is a a scalar type but it cannot be
used for these purposes.)

SUCC - this is a predeclared function that takes a value of a
scalar type and produces the next value, for example,
SUCC('A')- ' B ' .

PRED is like SUCC but produces the preceding value.

Enumerated type - a
their names (by
values are RED,

type whose values are given by listing
enumerating them). Here is a type whose
WHITE and BLUE:

TYPE FLAGCOLORS (RED, WHITE, BLUE);

Chapter 8 Exercises 125

CHAPTER 8 EXERCISES

1. Which of the following comparisons of strings are true?

(a) 'DAVID BARNARD' ■ 'DAVID BARNARD' ^
{b) 'E. WONG ' - 'EDMUND WONG' x
(c) 'MARK FOX ' - 'MARK FOX' x
(d) 'JOHNSTON' > 'JOHNSON ' ^
(e) '4 16 ELM ST ' < '414 ELM STREET'
(f) 'HUME, PAT' >- 'HOLT,RIC'
(g) 'ALLEN' <> 'ALAN ' X

2. Read in a phrase P from a single card, such as

ONE SWALLOW DOES'NT MAKE A SUMMER
or

AN OUNCE OF PREVENTION IS WORTH A POUND OF CURE

Write statements to accomplish each of the following.

(a) Find the first blank in P and set its location into the
integer variable FIRSTBLANK.

(b) Set the integer variable LASTWORD to the location of the
beginning of the last word in P.

(c) Change P by adding a period at the end of the phrase.

(d) Change P by replacing its first word by the character
' r.

(e) Change P by extending it on the right by the phrase THEY
SAY.

(f) Set the integer variable COUNT to the number of words in
P. You can assume that each word, except the last word, is
followed by a single blank.

3. Write a program which looks up Nancy Wong's telephone number
and prints it. You are given a set of data cards, each
containing a name and a phone number. For example, the first
card of this deck might be

JOHN ABEL 443-2162

4. Write a program that checks to see that the "I before E
except after C" rule in spelling is followed. Your program
should read some text which appears as a series of strings. It
should search for I and E appearing next to each other. If the
combination is El and is not immediately preceded by a C, then
the string should be printed together with an appropriate warning

126 PS/5: Alphabetic Information Handling

message. Similar action should be taken if C immediately
precedes IE.

5. Write a program that will accept names of persons (first and
last) punched one to a data card in the form

LOUISA MOLYNEUX

and print out

MOLYNEUX, L.

Make sure your program will work for names already abbreviated to
initials. Arrange that the program will work for a number of
cards on each run.

6. Write a program which reads text and determines the
percentage of words having three letters. For simplicity, use
text without any punctuation.

7. What does the following program print?

PROGRAM FLOWERS (INPUT,OUTPUT);
TYPE STRING6-PACKED ARRAY[1..61 OF CHAR;
VAR POEM: ARRAY I 1 . .21 OF STRINGS;

PART,SAYITAGAIN: INTEGER;
BEGIN

POEM[1]:-'A ROSE';
POEM[2 I :-' IS ' ;
FOR SAYITAGAIN:-1 TO 3 DO

FOR PART:-1 TO 2 DO
WRITELN(POEM[PART]);

WRITELN(POEMi11)
END.

Chapter 8 Exercises 127

8. What does this program print?

$JOB 'DIANNE KITCHEN'
PROGRAM POLISH(INPUT,OUTPUT);

TYPE NAMETYPE- PACKED ARRAY[1..9] OF CHAR;
VAR NAME: ARRAY[1..20] OF NAMETYPE;

PRICE: ARRAY[1..20] OF INTEGER;
I,J,P,N: INTEGER;
NAMETEMP: NAMETYPE;

BEGIN
READLN(N);
FOR I:-1 TO N DO

BEGIN
FOR J:=1 TO 9 DO

READ(NAMETEMP[J]);
NAME[I]:“NAMETEMP;
READLN(PRICE[I])

END ;
READLN(P);
FOR I:=1 TO N DO

IF PRICE[I]>P THEN
WRITELN(NAME[I])

END.
$DATA

3
JOHNSONS 518
LEMON OIL 21 1
DOMINO 341

300

9. Write a program which reads yesterday's and today's stock-
market selling prices and prints lists of rapidly rising and
rapidly falling stocks. A typical data card will look like this:

GENERAL ELECTRIC 93.50 81.00

The card gives you the company's name followed by yesterday's
price, followed by today's price. Your program should print a
list of companies whose stock declined by more than 10 per cent,
and then a list of companies whose stock rose by more than 10 per
cent.

10. You work for the Police Department and you are to write a
program to try to determine criminals' identities based on
victims' descriptions of the criminals. The police have cards
describing known criminals. These cards have the form

name height weight

Here is an example:

JOEY MACLUNK 67 125

128 PS/5: Alphabetic Information Handling

There is another set of cards giving descriptions of criminals
participating in unsolved crimes. Here is such a deck:

1 4 DEC : SHOP LIFTING 72 190
9 NOV: PURSE SNATCHING 66 130
6 NOV: BICYCLE THIEVERY 67 135

The two numbers give the
Write a program which firs
unsolved crimes. Then i
criminals' names and descr
and weight should be compa
for each unsolved crime,
the weight is within 1
message saying the crimina
(Note: Joey MacLunk is not

criminal's estimated height and weight,
t reads in the deck describing the
t reads the file cards giving the known
iptions. Each known criminal's height
red with the corresponding measurements
If the height is within 2 inches and
0 pounds, your program should print a
1 is a possible suspect for the crime,

a real person 1)

11. Write a program that uses ORD to find the value of 10 numbers
on an input card. Each number takes up a field of three columns.
Each is right-justified in its field and may have a minus sign.
The first and second columns of a field may be blank.

12. Write a program that reads a positive number and formats it
into an array of 10 characters, in this way.

$ZZ,ZZ9.99

Each Z means zero suppr
(leav ing blanks to the left
comma is printed only i
Each posit ion given here as
zero. For example

2 1 0732 i s formatted
67 150 i s formatted

4 i s formatted

You s hould use the CHR func

ission, so the dollar sign moves right
until a non-zero is found. The
it has a non-zero digit to its left.

9 is printed as a digit even if it is

as $2, 107.32
as $671.50
as $0.04

Chapter 9

STRUCTURING YOUR ATTACK
ON THE PROBLEM

STEP-BY“STEP REFINEMENT

Most of the examples of programming so far have been short
examples. Nevertheless we have emphasized some of the aspects of
good programming. These were:

1. Choosing meaningful words as identifiers.

2. Placing comments in the program to increase the
understandabi1ity.

3. Paragraphing loops and selection statements to reveal the
structure of control flow.

4. Choosing appropriate data structures.

5. Reading programs and tracing execution by hand, to strive
for correctness before machine testing.

All of these are important even in small programs, but it is only
when we attempt larger programs that our good habits will really
start to pay off.

And when we work on larger programs we will find that we have
something else to structure, and that is our attack on the
problem. To solve a problem we must move from a statement of
what the problem to be solved is, to a solution, which is a well-
structured program for a computer. The language of our program
will be Pascal.

The original statement of a problem will be in English, with
perhaps some mathematical statements. The solution will be in
Pascal. What we will look at in this chapter is the way we move

129

130 Structuring Your Attack on the Probten

from one of
whereby we
systematic
Sometimes
language st
the bottom
We speak of

these to the other. We will be discussing a method
go step by step from one to the other. This

method we will refer to as step-by-step refinement.
we say that we are starting at the top, the English-
atement of the problem, and moving down in steps to

level, which is the Pascal program for the solution,
the top-down approach to problem solution.

TREE STRUCTURE TO PROBLEM SOLUTION

To illustrate the technique of structuring the solution to a
problem by the step-by-step refinement, or the top-down approach,
we need a problem as an example. We need a problem that is large
or difficult enough to show the technique, but not so large as to
be too long to follow. If a program is too long and involved we
will use another technique that divides the job into modules and
does one module at a time. This is called modular programming.
It is another form of structured programming. But it must wait
until we have learned PS/6.

The example we choose is sorting a list of names
alphabetically. We will now start the solution by trying to form
a tree which represents the structure of our attack. The root of
the tree is the statement of the problem. In the first move we
show how this is divided into three branches;

Solve the problem
of sorting a list of

names in alphabetical order

Read list of names Sort list into Print sorted list
alphabetic order

At each of the thr
English statement,
statements, not "
something or other
instructions for as
making a hi-fi ampl
algorithm for mak
solved by following

ee nodes that descend from the root we have an
These statements are still "what-to-do"

how-to-do-it." A statement of how to do
is called an algorithm for doing it. A set of
sembling a hi-fi amplifier
ifier. A cake recipe in
ing a cake. The problem
the recipe.

is an algorithm for
a cookbook is an
of making a cake is

We will be moving down each branch of the solution tree
replacing a statement of "what to do" by an algorithm for doing
it. The algorithms will not necessarily be in the Pascal
language. We will use a mixture of English and Pascal at each
node until in the nodes farthest from the tree root we have a
Pascal program.

Choosing Data Structures 131

CHOOSING DATA STRUCTURES

Before we try to add more branches to the solution tree, we
should decide on some data structures for the problem of sorting
the list of names. We need not make all the decisions at this

stage, but we can make a start.

We will use an array of character strings called NAME to hold
the list of names to be sorted. The length of this list we will
call N and we will allow names up to 30 characters in length.
Because we want to compare the names to sort them, we will store
each name in a packed array of 30 characters. This we define as
type NAMETYPE. What we are deciding on is really the
declarations for the Pascal program, and for now we have decided

that we need

CONST NAMELENGTH-30 ;
MAXLIST-100;

TYPE NAMETYPE-PACKED ARRAY[1..NAMELENGTH] OF CHAR;
VAR NAME: ARRAY[1 . .MAXLIST 1 OF NAMETYPE;

TEMP: NAMETYPE;
I,N: 0..MAXLIST;
J: 1..NAMELENGTH;

In these declarations we are allowing a maximum size for the list
of 100 names. The actual list will have N names, and we must
read this number in as part of the input. We will put one name
on each card left-justified in the first 30 columns. For
indexing the list we clearly will need an index I. We will, as
well, need a J for indexing a name as we read it in a character
at a time. To compare names they must all be of equal length.
We will assume for the moment that we will keep the sorted list
in the same locations as the original list. The names will have
to be rearranged, and this means some swapping will be needed.
We will use the variable TEMP with type NAMETYPE to do this

swapping.

GROWING THE SOLUTION TREE

Having decided on at least some of the data structures, we
are prepared to continue the process of structuring the solution
tree. We can see how to develop the left and right branches now,
even as far as transforming them into Pascal program segments.
We must read in the names character by character. The middle
branch can be refined a little by saying that sorting will be
accomplished by element swapping. Here is the tree now:

132 Structuring Your Attack on the Problem

Solve the problem of
sorting a list alphabetically

FOR I:- 1 TO N DO
BEGIN

FOR J:-1 TO NAMELENGTH DO
IF NOT EOLN THEN

READ (NAME[I][J])
ELSE

NAME[I][J]:-BLANK;
READLN

END;

FOR I:-1 TO N DO
BEGIN

WRITE(BLANK);
WRITELN(NAME[I])

END;

Swap elements of list
NAME until sorted

At this stage we must obviously face up to designing an algorithm
for producing a sorted list by swapping.

DEVELOPING AN ALGORITHM

We want the names to be in the sorted list so that each name
has a larger value than the name ahead of it in the list.

In the sorted list

HOLT
HORNING
HULL
HUME

we see that each name is alphabetically greater than the one
preceding it.

In our solution tree one branch must be developed further;
this is, Swap elements of list NAME until sorted." We have seen
from the example that a sorted list has the largest value in the
last position. This is also true of the list if an element is
removed from the end. The new last element is the largest one of
the smaller list. So our next refinement in the solution is to
arrange the list in this way. We write:

"Do with LAST varying from N to second,
swap elements so largest is in LAST"

In the list of four names, LAST begins with a value of 4, and the
names are swapped so HUME is in position 4. Then last is set to
3 and the names are swapped so HULL is in position 3. Then last
is set to 2 and HORNING is placed in position 2. The only

Developing an Algorithm 133

remaining name, HOLT, is left in position 1, and the list is
alphabetized.

The first part of this can be written in Pascal as

FOR LAST;-N DOWNTO 2 DO

But we must still refine the part,

"Swap elements so largest is in LAST"

We will now refine this part; it becomes

"FOR I varying from first TO (LAST-1)
IF elementll] > element!1+1] THEN
swap elements"

The first two parts of this can now become Pascal; this produces

FOR I:-1 TO LAST-1 DO
IF NAME[I] > NAME[1+1] THEN

swap elements;

We must now refine the statement "swap elements". It is

TEMP:-NAME[I];
name!I];-NAME[1+1];
NAME[1+1];-TEMP;

Because these three statements go after a THEN, we must precede
them by BEGIN and follow them by END.

Now we can assemble the complete program.

134 Structuring Your Attack on the Problem

THE COMPLETE PROGRAM

$JOB 'RICK BUNT'
PROGRAM SORT (INPUT,OUTPUT);

(* SORT LIST OF N NAMES ALPHABETICALLY *)

CONST BLANK-' '?
NAMELENGTH-3 0 ;

MAXLIST-100;
TYPE NAMETYPE-PACKED ARRAY[1..NAMELENGTH1 OF CHAR;

VAR NAME: ARRAY [1..MAXLIST) OF NAMETYPE;

TEMP: NAMETYPE;

I,N,LAST: 0..MAXLIST;

J: 1..NAMELENGTH;

BEGIN
(♦ READ NAME LIST ♦)

READLN(N);

FOR I:-1 TO N DO

BEGIN
FOR J:-1 TO NAMELENGTH DO

IF NOT EOLN THEN

READ(NAME[I][J])

ELSE

name!I I [Jl :-BLANK;

READLN

END;

(♦ SWAP ELEMENTS OF LIST UNTIL SORTED *)

(♦ LOOP WITH LAST VARYING FROM N TO SECOND *)

(♦ SWAP ELEMENTS SO LARGEST VALUE IS IN LAST ♦)

FOR LAST:-N DOWNTO 2 DO

(* WITH I VARYING FROM FIRST TO LAST-1 *)

(♦ IF element!11 > element!1+1 1 *)

(♦ SWAP THESE ELEMENTS ♦)

FOR I:-1 TO LAST-1 DO

IF name!I] > name!1+1] THEN

BEGIN

TEMP:-NAME!I 1 ;

NAME!I 1 :-NAME!1+1] ;

name!1+11:-TEMP

END ;

(* PRINT NAME LIST ♦)

FOR I:- 1 TO N DO

BEGIN

WRITE(BLANK);

WRITELN(NAME!I])

END

END.

IDATA

5

ANDREWS

CAMERON

ALLEN

BAKER

DAWSON

A Better Algorithm 135

Notice that the English parts of the solution tree remain as
comments in the final program. Comments are not added after a
program is written, so that it can be understood at a later date,
but are an integral part of the program construction process.

ASSESSING EFFICIENCY

In this approach to problem solution we have moved step by
step to refine the statement of the problem in English into a
program in a language that is acceptable to a computer, namely
Pascal. In the process, as we constructed the solution tree, we
gradually replaced statements of what is to be done by statements
of how it is to be done; we devised an algorithm for performing
the process. The algorithm was expressed in English, or a
mixture of English and Pascal. Then finally we had a Pascal
program.

Nowhere during this process have we spoken about the
efficiency of the method that we have chosen, that is, the
efficiency of our algorithm. This is because the issue of
efficiency com.plicates the solution. Since in structured
programming we are trying to control complexity, we have in this
first attempt eliminated efficiency from our considerations.

This means that to now add the refinement of a more efficient
algorithm will require us to back up to an earlier point in the
solution tree and redo certain portions. In the step-by-step
refinement method of problem solution we do not always move from
the top down in the solution tree. In that sense, then, the top-
down approach is slightly different. In it you would move always
in the one direction. In practice this would be impractical, as
afterthoughts must always be allowed to improve a method of
solution. The only reason to reject afterthoughts is that the
work in incorporating them is not justified, considering the gain
that would result.

In our particular example you can see that it is possible, at
a certain stage, that the list might be sorted and that there is
no need to keep on to the bitter end. What we should incorporate
is a way of recognizing that the list is sorted so that the
mechanical sorting process can stop.

A BETTER ALGORITHM

What we must do is to back up in the solution tree to the
point where we had in the middle branch the words, "Swap elements
of NAME until sorted." We have translated this essentially by
the statement, "Swap elements of NAME in such a way that at the
end of the swapping process the list is sure to be sorted."

136 Structuring Your Attack on the Problem

We are go
of NAME in such
list would be
when the normal
see that we
The condition o
same as what
condition

ing to change now to the statement, Swap elements
a way that at the end of the swapping process the

sorted, and stop either when the list sorted or
end of the swapping process is reached." You can

are going to have a loop now with two conditions,
f the swapping process's being finished is the

we have now. What we must add is the second

"list is not sorted"

But how do we know when the list is sorted? We must devise a
method to test whether or not the list is sorted. You will
notice that if the inner loop does not swap any names, the list
must be sorted. We should have a Boolean flag called SORTED that
can be set to TRUE to indicate that the list is sorted or FALSE
to indicate that the list is not sorted.

The outer loop would then begin

WHILE(NOT SORTED) AND (LAST>-2)D0

We would have to initialize this loop by having these

instructions precede it.

SORTED:-FALSE;
LAST:-N;

These set the flag SORTED to FALSE so that the loop will begin
properly and start the count. Inside the loop we must perform
the adjustment in the index LAST by -1. Since we are now using a
WHILE loop instead of a counted FOR loop, we must do our own
counting. This would mean we need the instruction

LAST:-LAST-1

just before the end of the loop. We want SORTED to be changed to
TRUE if no swapping takes place in the inner FOR loop. This can
be accomplished if we set it to TRUE just before we enter the
inner loop and return it to FALSE if any swapping does take
place. The altered part of the program is as follows. The
variable SORTED must be declared as BOOLEAN.

Better Algorithms 137

(* SWAP ELEMENTS OF LIST UNTIL *)
(* EITHER SWAPPING PROCESS IS COMPLETED ♦)
(* OR THE LIST IS SORTED AS INDICATED *)
(* BY THE FLAG 'SORTED' BEING TRUE ♦)
SORTED:"FALSE;
LAST:-N;
WHILE(NOT SORTED)AND(LAST>-2)DO

BEGIN
SORTED:-TRUE;
FOR I:-1 TO LAST-1 DO

IF NAMEll] > NAME[1+11 THEN
BEGIN

SORTED:-FALSE;
TEMP:-NAME[l];
NAME[I]:-name!1+1];
NAME[1+11:-TEMP

END;
LAST:-LAST-1

END;
(* PRINT NAME LIST *)

(as before)

BETTER ALGORITHMS

In our example we could see that an improvement in the
efficiency of the sorting algorithm could be achieved, and we
backed up the solution tree and redid a portion to incorporate
the improvement. This was an easier job than trying to think
about efficiency in the first place. This is why in the step-by-
step refinement method we do not consider efficiency at first.
In a way we were lucky that our algorithm could be modified so
readily. We might have done the swapping in ah entirely
different way, in which we would not be able to detect a sorted
list by the absence of swapping on any iteration of the process.

To see how this might be, suppose that to sort this list each
element were compared with the first element. If it were
smaller, the two would be swapped. With the smallest in the
first position the list would be shortened by one and the process
repeated. The difficulty here is that the fact that no swapping
occurs in any round only means that the smallest is already in
the first position, not that the list is sorted. We have no way
of seeing that the list is sorted unless we compare each list
member with its next-door neighbor. And this is what we did in
our sorting method.

So our method is more suited to this particular improvement
than a method that involves swapping by comparison of each
element with one particular element. If we had started this way
we would have had to revise completely. To say that efficiency
considerations are left until after a first algorithm is
programmed produces disadvantages. For many standard processes
like sorting, various algorithms have been explored, their

138 Structuring Your Attack on the Problem

efficiencies evaluated, and a best algorithm determined. The
method we have developed is certainly not the best that has been

devised.

This best, or optimal, algorithm often depends on the problem
itself For instance, one algorithm may be best for short lists,
another for long lists. Establishing "the" best method is very
difficult and depends on circumstances. Always try to pick a
"good" algorithm if you are programming a standard process. At
least avoid "bad" algorithms. Very often, programs are already
written using good algorithms and you can use them directly in
your own program. But that is something we will discuss in the
subset PS/6. We can create programs from modules that are
already made for us. Then one of the branches of your solution
tree is filled by a prefabricated module. We need only learn how
to hook it up to our own program. We can also create modules of
our own. This technique is called modular programming and it is
an additional way to conquer problem solving, by dividing the

problem into parts.

CHAPTER 9 SUMMARY

In previous chapters we concentrated primarily on learning a
programming language; we have covered variables, loops, character
strings, arrays and so on. In this chapter, the focus has been
on using a programming language to solve problems.

The method of problem solving which we described is based on
the idea of dividing the problem into parts - the divide-and-
conquer strategy. Each of these parts in turn is divided into
smaller parts. This continues until eventually the solution to
the problem has been broken into small parts which can be written
in a programming language like Pascal. We will review this
method of problem solving using the following terms:

Top-down approach to programming. When using a computer to solve
a problem, you should start by understanding the problem
thoroughly. You start at the "top" by figuring out what your
program is supposed to do. Next you split your prospective
program into parts, for example, into a reading phase, a
computation phase, and a printing phase. These phases
represent the next level in the design of your program. You
may continue by defining the data which these phases use for
passing information among themselves, and then by writing
Pascal statements for each of the phases. The Pascal
statements are the bottom level of your design; they make up
a program which should solve your problem. In larger
programs, there may be many intermediate levels between the
top - understanding the problem completely - and the bottom -
a program which solves the problem. (Beware:top-down program
design does not mean writing PROGRAM name(INPUT,OUTPUT); at
the top of the page, followed by declarations, followed by
statements! The top level in top-down design means gaining an

Chapter 9 Exercises 139

understanding of the problem to be solved, rather than
writing the first line of Pascal.)

Step-by-step refinement. When you are writing a program, you
should start with an overall understanding of the program's
purpose. You should proceed step by step toward the writing
of this program. These steps should each refine the proposed
program into a more detailed method of solving the problem.
The last step refines the method to the level where the
computer can carry out the required operations. This means
that the final refinement results in a program which can be
executed by the computer. As you can see, the idea behind
top-down programming is step-by-step refinement leading from
the problem statement to the final program.

Tree structures to problem solution. In this chapter we have
illustrated top-down programming by drawing pictures of
trees. The root, or base, of the tree is labelled by the
statement of the problem. Once the problem has been refined
into subproblems, we have our tree grow a branch for each
subproblem. In turn, each subproblem can be divided,
resulting in sub-branches, and so on. When you are actually
solving problems, you will probably not actually draw such a
tree. However, you may well use the idea behind drawing this
tree, namely, step-by-step refinement leading from problem
statement to problem solution.

Use of comments. One of the purposes of comments, (*...*), in a
program is to remind us of the structure of the program.
This means that comments are used to remind us that a
particular sequence of Pascal statements has been written to
solve one particular part of the problem.

CHAPTER 9 EXERCISES

1. You are to have the computer read a list of names and print
the names in reverse order. In your top-down approach to writing
your program, you first decided your program should have the
overall form:

(a) Read in all of the names;

(b) Print the names in reverse order;

I

Next, you decided that the names will be passed from part (a) to
part (b) via an array declared by

VAR NAME: ARRAY[1..501 OF STRING!0;

where we have preceding this the type definition

TYPE STRING 10 - PACKED ARRAY[1 .. 101 OF CHAR;

140 Structuring Your Attack on the Problem

The index of the last valid name read into this array will be
passed to part (b) in a INTEGER variable called HOWMANY. Making
no changes to this overall form, you must now complete the
program. Include comments at the appropriate places to record
the purpose of the two parts of your program. Answer the
following questions about your completed program.

Can you think of another way to write part (a) of your

program without changing part (b)? How?

Can you think of another way to write part (b) of your

program without changing part (a)? How?

2. The school office wants a list of all A students and a list of
all B students. There is a punched card for each student giving
his name left-justified in the first 20 columns followed by a
space then the grade in the next 2 columns, for example:

DAVE TILBROOK A-

Each grade is A,B,C,D or F, which may be followed by + or -. The
school's programmer has designed the following three possible
structures for a program to read these cards and print the two

required lists.

First program structure:
(a) Read names and grades and save all of them in arrays;
(b) Print names having A grades;
(c) Print names having B grades;

Second program structure:
(a) Read names and grades and save only those with A's or B's

in arrays;
(b) Print names having A grades;
(c) Print names having B grades;

Third program structure:
(a) Read names and grades, printing names with As and saving

only names with Bs.
(b) Print names having Bs.

Suppose the final program will have room in arrays to save at
most 100 students' names. What advantage does the second program
structure have over the first one? What advantages does the third
program structure have over the second one? You do not need to
write a program to answer these questions.

3. A company wants to know the percentage of its sales due to
each salesman. Each salesman has a card giving his
identification number and the dollar value of his sales. The
top-down design of a program to print the desired percentages has
resulted in this program structure:

(a) Read in salesmen's numbers and sales and add up total sales;
(b) Calculate each salesman's percentage of the total sales;

Chap ter 9 Exercises 141

(c) Print the salesmens' numbers and percentages.

Parts (a) and (c) have been written in Pascal. You are to write
part (b) in Pascal, add declarations and complete the program. Here
is part (a) written in Pascal:

(* READ IN SALESMEN AND SALES AND ADD UP TOTAL SALES *)
TOTALSALES:-0;
I:-1 ;
WHILE NOT EOF DO

BEGIN
READLN(SALESMAN[I],SALES[I]);
TOTALSALES:-TOTALSALES+SALES[I];
I;-1+1

END ;
N: -I- 1 ;

Here is part (c) written in Pascal;

(* PRINT SALESMEN'S NUMBERS AND PERCENTAGES *)
WRITELN(' SALESMAN',' PERCENT');
FOR I;-1 TO N DO

WRITELN(SALESMAN[I],PERCENT[I]);

You are to complete the program without changing parts (a) and (c).

• ■ •. S I

•. ♦ .1 I •

■I”* o:
r i

r i i

” r- i

h.J- J-.

If
A

9

,i ■"

. 1 j •

:w5 .T tti ♦’

•MimTtnfi '

. r >-> V

'■-'t ^ I * * •'

tiiiifima

• 4»

• »

>•

Chapter 10
THE COMPUTER CAN
READ ENGLISH

In the subset PS/4 you learned how to handle character
strings. You learned how to compare strings, either for the
purpose of recognizing particular strings or for putting various
strings in order. But there are more things that you can do with
strings. In this chapter we will show how to create the illusion
that the computer does things that we normally associate with
people; we might say that it is "intelligent". We say it has an
artificial intelligence, since it is of course not human, and
thinking is what humans do. The field of artificial intelligence
in computer science concerns itself with getting the computer to
perform acts that we think of as the province of humans. Of
course, when we see how it is done, we realize it is just a
mechanical process. It has to be mechanical or a machine could
not do it. But if you do not know how the "trick" is performed,
it does seem as if the machine can "think".

The field of artificial intelligence is involved with many
different activities of man as imitated by machine, but one of
the most interesting is the way that a machine is made to deal
with statements made in natural language. We call a language,
like English, a natural language because it evolved over a period
of time through use, A language like Pascal is a formal
language. It has been defined, it is unambiguous and it is
really very limited. Trying to get computers to deal with
natural language is a major task. We would like to be able to
write questions in natural language and have the computer provide
answers to our questions from a bank of information. This is a
goal in information retrieval systems.

We have not yet got very far along the way towards question¬
answering systems in natural language, but it is clear there are
basic "skills" the computer must have before it can cope with
this. One of these skills is the ability to read.

143

144 The Computer Can Read English

WORD RECOGNITION

When you first learn how to read you mu
words. To do this you must recognize what a
the basic characters, the letters, then you
a string of characters with a blank in front
and no blanks in between. We are now goi
that will input a line of text and split it
simplify the job, we will begin our
punctuation marks in the text. As an exampl

st le arn to re cogni ze

word i s . You lea rn

lear n th at a word i s

and a bl ank a f ter it

ng to wr i te a progr am

up i nto wo rd s . To

probl em wi tho ut a ny

e,

HEREbISbAbTEXTb

where we have used b to represent a blank. The method of dealing
with problem solving by simplification is very helpful. Solve a
simpler problem before you try a harder one. We will learn to
cope with punctuation marks later. We will use character arrays

such as TEXT defined by

VAR TEXT: ARRAY[1..80 I OF CHAR;

We will not use a PACKED ARRAY here becau
or write TEXT as a unit. Indexing an array
less efficient on some computers when
because the computer must extract, or unpac
collection of characters (from a computer
computers the unpacking is very efficient a
worry about efficiency when using PACKED.

se we will
, as in
the arra

k the char
"word").

nd on thes

not compare
TEXT[I 1 , is
y is packed,
acter from a

But on many
e we do not

Our solution tree for this problem is:

Read text a word at a time

Read line of text
and determine its length

WHILE (any text is left)DO
Split off and print next word

All the parts are straightforward except "Split off and print
next word." We will refine it further:

Word Recognition 145

Split off and print next word

Find next letter of TEXT WHILE(letter not a blank)DO
BEGIN

Add letter to word;
Get next letter

END;

To determine
indicates the
working on.
will be TEXT[COLUMN].
pointer called LETTER

the next letter of the text we use a pointer which
position in the text string that you are currently

We will call this pointer COLUMN. The next letter
To add a letter to WORD we use another

WORD[LETTER]:-next letter

We are ready now for the program:

146 The Computer Can Read English

$JOB 'JULIE SANDORFI'
PROGRAM READING (INPUT,OUTPUT);

(♦ READ TEXT A WORD AT A TIME *)

CONST BLANK-'
MAXCOL-80;
MAXCOLPLUS1-81;

TYPE LINETYPE-ARRAYl1..MAXCOLPLUS11 OF CHAR;
VAR TEXT,WORD: LINETYPE;

LETTER,LENGTHLINE,LENGTHWORD,I: 0..MAXCOL;
COLUMN: 1..MAXCOLPLUS1;

BEGIN
TEXT[MAXCOLPLUS1]:-BLANK; (♦ UNUSED DUMMY AT END ★)

WHILE NOT EOF DO
BEGIN

(♦ READ LINE OF TEXT AND DETERMINE ITS LENGTH ♦)

COLUMN:- 1;
WHILE(NOT EOLN) AND (COLUMN<-MAXCOL) DO

BEGIN
READ(TEXT[COLUMN]);
COLUMN:-COLUMN+1

END;
READLN;
LENGTHLINE:-COLUMN-1;
COLUMN:- 1 ;
WHILE COLUMN<-LENGTHLINE DO

BEGIN
(♦ SPLIT OFF AND PRINT NEXT WORD ♦)
WHILE(COLUMN<-LENGTHLINE)AND(TEXT[COLUMN 1-BLANK) D(

COLUMN:-COLUMN+1;
LETTER:-1;
WHILE(COLUMN<-LENGTHLINE)AND(TEXT[COLUMN]OBLANK) :

BEGIN
WORD[LETTER 1 :-TEXT[COLUMN] ;
LETTER:-LETTER+1;
COLUMN:-COLUMN+1

END
END.

END ;
LENGTHWORD:-LETTER-1;
IF LENGTHWORDOO THEN

BEGIN
FOR I:-1 TO LENGTHWORD DO

WRITE(WORD(I 1) ;
WRITELN

END
END

This program has been somewhat complicated because several blanks
might separate words and there might be trailing blanks after the
last word on a line. These trailing blanks cause the program to
determine that LENGTHWORD-0, so we avoid printing when this is
true. We made the TEXT array one column longer than the maximum
allowed line width because the WHILE test to see if TEXTlCOLUMNl
is blank is sometimes made when COLUMN is one beyond MAXCOL. The

Words With Punctuation 147

array index must not have a value outside the declared range of
the index for TEXT.

WORDS WITH PUNCTUATION

We want now to modify the previous program to do the same
thing when there are punctuation marks present, that is, find the
words in a text and print them out one by one. We usually try to
build on the previous work so that we do not need to do
everything from scratch. If we could reduce the text with the
punctuation marks to one without such marks, we could then use
the old program. The solution tree would be:

Read a text with
punctuation marks

Eliminate
punctuation marks

Read a text without
punctuation marks

Our problem is to eliminate punctuation marks from text,
accomplished as the text is read by this program segment

WHILE NOT EOLN DO
BEGIN

Read a character;
IF character is a letter or blank THEN

Advance column index
END;

This is

The program for this will be:

WHILE NOT EOLN DO
BEGIN

READ(TEXT[COLUMN]);
IF(TEXT[COLUMN]-' ')OR

((TEXT[COLUMN]>-'A')AND(TEXT[COLUMN]<-'Z'))THEN
COLUMN:-COLUMN+1

END;

After this has been executed, TEXT can be separated into words as
in the previous program since all the punctuation marks have been
removed.

148 The Computer Can Read English

This book is set by a computer so that the words in any line
are both left- and right- justified; there is one non-blank
character in the leftmost and one in the rightmost position of
each line of text. This is accomplished by inserting extra
blanks between words so that some have two or three blanks
instead of one. It is a job that used to require a skilled
linotype operator. You will notice that for this book the
computer never hyphenates words, and this may mean that some
lines have rather a lot of blanks. This happens when the first
word of the next line is a long one. We will speak more of text

editors a little later.

WORD STATISTICS

We have learned to read words of a text, recognize certain
words such as STOP, replace words and to treat words in a list in
different ways as we did with the list of names. Another
important use of a computer in dealing with words involves
keeping statistics about the lengths of words. Different authors
have different patterns of use of words and this shows up in the
frequency with which they use words of different lengths. Some
authors use a lot of long words; others rarely do.

In this section we will read a text and from it prepare a
frequency distribution of word lengths. To add a little extra
interest to this problem, we will display the results in graphic
form. For instance, we will have a display like this for output:

LENGTH OF WORD FREQUENCY
1
2 ♦♦♦♦♦♦

4

This display, called a histogram, represents the result of
analyzing the frequency of different word lengths in a text. It
shows that there were 3 one-letter words, 6 two-letter words, 8
three-letter words, and 5 four-letter words.

We will not read the entire line of text this time before
breaking it into words but will read a word at a time. We will
presume that there are no punctuation marks, just words with
blanks between them.

Word Statistics 149

$JOB 'PHYLLIS GOTLIEB'
PROGRAM DISPLAY(INPUT,OUTPUT);

(* DETERMINE FREQUENCIES OF WORD LENGTHS (UP TO 20) *)
CONST MAXLENGTH-20;
VAR FREQUENCY; ARRAY[1..MAXLENGTH] OF INTEGER;

LENGTH,I,J: INTEGER;
CH: CHAR;

BEGIN
FOR I:“1 TO MAXLENGTH DO

frequency!I] :-0 ;
WRITELN(' LENGTH OF WORD',' FREQUENCY');
WHILE NOT EOF DO

BEGIN
CH:-' '; (* INITIALIZE TO START LOOP *)
WHILE(NOT EOLN)AND(CH-' ')DO (* SKIP LEADING BLANKS *)

READ(CH);
IF CH <> ' ' THEN (★ IF LINE HAS A WORD THEN *)

BEGIN
LENGTH:- 1 ;
WHILE (NOT EOLN) AND (CH <> ' ')DO

BEGIN
READ(CH);
LENGTH:-LENGTH+1

END ;
IF CH-' ' THEN

LENGTH:-LENGTH-1; (* IGNORE TRAILING BLANK *)
IF LENGTH<“MAXLENGTH THEN

FREQUENCY[LENGTH]:-FREQUENCY[LENGTH]+1
END;

IF EOLN THEN
READLN

END ;
FOR I;-1 TO MAXLENGTH DO

BEGIN
WRITE(I,' ');
FOR J:-1 TO frequency!I 1 DO

write! '♦ ') ;
WRITELN

END
END .

$DATA
ROSES ARE RED
VIOLETS ARE BLUE
HONEY IS SWEET
AND SO ARE YOU

The output for this is

150 The Computer Can Read English

LENGTH OF WORD
1
2
3
4
5
6
7

• • •

20

READING PASCAL

We have been reading English text and performing operations
on it, or as the result of it. All these operations, we see, are
absolutely mechanical but give you the impression that the
computer is capable of doing things we think of as "intelligent
work". One of the fields of artificial intelligence that has
been explored is the translation from one language to another.
The translation of one natural language into another, such as
English to French, has had only qualified success. It works, but
not well when the text is ambiguous or difficult. The
translations are not good literature, to say the least.

But computers are being used for language translation every
day, for the translation of programming languages into machine
languages. The reason this is possible is that programming
languages are well defined and quite limited.

Your Pascal programs are translated by the compiler program
into machine language programs before execution. A Pascal
program is made up of keywords and identifiers such as FOR, READ
and WHILE and special symbols such as semicolon and colon. A
translator for Pascal first reads in the characters of the Pascal
program and separates them into keywords, identifiers and special
symbols. It can tell which keyword it has read by comparing the
word it has read to the known keywords. When a statement keyword
such as WHILE is recognized, the translator knows it is to
produce machine language for a loop. The last chapter of this
book discusses how this is done.

CHAPTER 10 SUMMARY

In this chapter we have shown how the computer can, in a
sense, understand English. The computer can recognize words by
scanning for their beginnings and endings. Typically, words in
English are surrounded by blanks or special characters; programs
can be written which separate out words by searching for these
characters. Due to the great speed of computers, they sometimes
have the appearance of being intelligent, in spite of the fact

FREQUENCY

♦ ♦

♦

♦

Chapter 10 Exercises 151

that their basic mode of operation is very simplistic, such as
seeing if a given character is a blank. Pascal compilers have
been developed to read text which looks somewhat like English;
the text which they have been designed to read is Pascal
programs.

CHAPTER 10 EXERCISES

1. A palindrome is a word or phrase which is spelled the same
backwards and forwards. The following are examples of word
palindromes: "I", "mom", "deed" and "level". Blanks and
punctuation are ignored in phrase palindromes, for example,
"Madam, in Eden I'm Adam" and "A man, a plan, a canal, Panama".
Write a program which reads a string and determines if it is a
palindrome.

2. You are to write a program which will help in reviewing a
script to determine its suitability for television screening.
Your program is to give a list of the frequency of use of the
following unacceptable words;

PHOOEY SHUCKS JEEPERS GOLLY

Make up a few lines of script to test out your program.

3. You are employed by an English teacher who insists that "and"
should not be preceded by a comma. Hence, "Crosby, Stills, Nash
and Young" is acceptable, but "Merril, Fynch, and Lynn" is not.
Write a program which reads lines of text, searches for
unacceptable commas, removes them, and makes stern remarks such
as the English teacher would make about errors.

4. Write a program which reads text and then prints it so that
its left and right margins are vertical. First the program is to
read the number of characters to print per line. Whenever enough
words for one line have been collected, blanks are inserted
between words to expand the line to the desired width. Then the
expanded line is printed.

K f

* lliMJt i «r <L» <VU4r

- <» ■ , K ■ t •.* fcr • t •r^ . ’

• « • «*ii \ i»d- •

#• ft**" . ’-t -4* ■% . •' ■

#M ■♦ ift ft * Ik It'll' MV* ft •* . k •».

« ^ • I^Aft ' *«ftf<''' M . 4'ftMl fO

. • » |i• ■ I * *'• t. •- ♦ 4 kj 4 *' * .!*>i A0 ljji.*'i’i * »•. ■ •■

* • 1 »' •Ufc.—*»*i i*_ ■ *■

"1» 1 ♦■ >♦■*'“. 1

• n «it * i/vV »U.<«

'1' "s* <; « 1'* v3 •*
• ‘W • f 4* ^ ‘ -'•"•H*.

ft;. ■«»,• •- - I* ■ «

'4Wi| 9" ■ ■* ■* * * W *« * ® »* i Y®61

^ ■' inwO}«* »T*
• fc »■ ,

• «* . t0v» tS»

•»*< M u

#*M • * . • «'j 4
<• I ‘i »» » ^ ^ • 4 4'j

• »•••• i; . ii ftf »f ■ •
•t# ♦t ^ ■ ■ . .
» ir* t < f) * , *-| » • •'■ ti : *

r # • j« •f*w S * ti’ ■ '44 »♦ t I * i-' ■ i Jt

,t t *mi n4 ft .'
’ • • ^4 • 4^4

»

4 |.«
• * ♦ L . ,

« ^v ’ f4 4i ' V« ' #

4-

Chapter 11
PS/6: SUBPROGRAMS

In this subset we will be introducing the idea of subprograms
other than the main program that has constituted all programs so
far. The purpose of having subsidiary programs or subprograms is
so that a larger program can be divided into parts. In this way
we "divide and conquer" a complicated problem. Sometimes a part
of the solution of one problem can be used in many different
problems, and making it into a subprogram creates a module or
building block which can be used in many programs.

PROCEDURES

There are two kinds of subprograms in Pascal; procedures and
functions. Essentially, procedures allow you to invent new
Pascal statements, while functions allow you to invent new
operations. We will give an example of a procedure first.

Suppose we wish to determine the larger of two INTEGER
numbers. We could write a procedure to find the larger one; this
is done in the following procedure declaration;

PROCEDURE LARGER(FIRST,SECOND: INTEGER; VAR RESULT: INTEGER);
BEGIN

IF FIRST>SECOND THEN
RESULT:-FIRST

ELSE
RESULT:-SECOND

END;

The heading of the procedure declaration is the keyword
PROCEDURE, followed by the name of the procedure, LARGER,

153

154 PS/6: Subprograms

followed in parentheses by a list of formal
types. There are two kinds of formal
par amete r s and variable parameters. A

sometimes called
keyword VAR in
are used to feed
information back

a VAR parameter because it
the formal parameter list

information into a subprog
out. Value parameters can

into the subprogram.

parameters with their
parameters: value

variable parameter is
is declared using the

. Variable parameters
ram and also to feed
only feed information

The body of the procedure
BEGIN and terminated by END.
has a semicolon after it.
program its declaration is
variable declarations of the

is a compound statement prefaced by
Note that the END of a procedure

To use this procedure in a main
included immediately after any

main program. Here is an example

$JOB 'STEWART LEE'
PROGRAM BEST (INPUT,OUTPUT);

VAR DATA 1 ,DATA2,MAXIMUM: INTEGER;

(* THIS IS THE DECLARATION OF THE PROCEDURE ★)
PROCEDURE LARGER(FIRST,SECOND: INTEGER; VAR RESULT: INTEGER);

BEGIN
IF FIRST>SECOND THEN

RESULT:-FIRST
ELSE

RESULT:-SECOND
END ;

(* THIS IS THE BODY OF THE MAIN PROGRAM *)
BEGIN

READ(DATA1,DATA2);
LARGER(DATA1,DATA2,MAXIMUM);
WRITELN(' THE LARGER IS',MAXIMUM)

END .
$DATA

5 3 1

We have included a blank line before and after the procedure
declaration but this is not necessary.

When the LARGER procedure is called, via the procedure
statement in the main program

LARGER(DATA1,DATA2,MAXIMUM);

the value form.al parameter FIRST takes the value of the actual
parameter DATA1, SECOND takes the value of the actual parameter
DATA2 and RESULT which is a variable formal parameter becomes
another name for MAXIMUM. Inside the procedure, whenever the
value of RESULT is changed, the effect is to change the value of
MAXIMUM. The LARGER procedure is entered and RESULT, which is
really MAXIMUM, is set to the larger of FIRST and SECOND. When
the end of the LARGER procedure is reached, execution returns to
the statement just beyond the procedure statement, which invoked

Functions 155

its use. It returns to the WRITELN statement. Given the data
values 5 and 31, the program will print

THE LARGER IS 31

Conceptually, our procedure provides us with a new Pascal
statement which we can use whenever we want to find the larger of
two numbers.

This has been a very simple example; if you were writing such
a simple program as this one you would not bother to use a
procedure.

FUNCTIONS

We will now show how function subprograms are declared and
used. We could have found the larger number by writing a
function rather than a procedure. A function named BIGGER is
used in the following version of the program.

Here is the declaration for a function named BIGGER:

FUNCTION BIGGER(FIRST,SECOND: INTEGER): INTEGER;
BEGIN

IF FIRST>SECOND THEN
BIGGER:-FIRST

ELSE
BIGGER:-SECOND

END;

The heading for a function declaration is the keyword FUNCTION
followed by the name of the function, here BIGGER, then in
parentheses the formal parameters and their type. After the
parentheses we have a colon and then the type of the function
itself. The name of the function acts like a variable which must
be assigned a value before you finish execution of the function.
In this example the variable BIGGER is assigned the value of the
value parameter FIRST or SECOND depending on which is l?igger.
Functions are not allowed to have variable (VAR) formal
parameters; the single output value is assigned to the function
itself.

Here is a program using this function.

156 PS/6: Subprograms

$JOB 'RON BAECKER'
PROGRAM BIGONE (INPUT,OUTPUT);

VAR DATA1,DATA2,MAXIMUM: INTEGER;

(* THIS IS THE FUNCTION DECLARATION *)
FUNCTION BIG^^(FIRST , SECOND : INTEGER): INTEGER;

BEGIN
IF FIRST>SECOND THEN

BIGGER:-FIRST

ELSE
BIGGER:-SECOND

END ;

(♦ THIS IS THE BODY OF THE MAIN PROGRAM *)

BEGIN
READ(DATA1,DATA2);
MAXIMUM:-BIGGER(DATA1,DATA2);
WRITELN(' THE LARGER IS',MAXIMUM)

END.
$DATA

5 3 1

This job will print the same as the previous job, namely:

THE LARGER IS 31

The BIGGER subprogram is a function because it provides a value
to its name, BIGGER in its declaration. Since it is a function,
it must be given a type, the type of the value its name is to be
assigned. The BIGGER function is entered as a result of the fact
that its name appears in the assignment statement of the main
program:

MAXIMUM:-BIGGER(DATA1,DATA2);

When the BIGGER function is entered, the value formal parameter
FIRST is assigned the value of the actual parameter DATAl and
SECOND the value of DATA2. Conceptually, our function provides
us with a new arithmetic operation which we can use in arithmetic
expressions. We could have replaced the assignment to MAXIMUM
and the immediately following WRITELN statement by the statement

WRITELN(' THE LARGER IS',BIGGER(DATA1,DATA2));

This change would not affect the printed answer.

Our example subprograms LARGER and BIGGER illustrate the
following differences between procedures and functions. The
definition of a function must include the type of the function
itself. The value assigned to BIGGER must match this type. For
example, in the function called BIGGER, the value assigned to
BIGGER matches the INTEGER type given in the function heading. A
procedure is entered when it is invoiced using its name as the
first word in a statement, followed by a list of actual

Nesting and Subprograms 157

parameters in parentheses. A function is entered when its name
appears in an expression, such as the right side of an assignment
statement, followed by a list of actual parameters in
parentheses.

NESTING AND SUBPROGRAMS

Once a procedure has been defined, it can be used, by name,
just like any other Pascal statement. It is even possible to use
statements that invoke procedures inside other procedures. We
will give simple examples to show the use of nesting with
procedures. The following job prints the largest of its three
data values.

$JOB 'SCOTT GRAHAM'
PROGRAM BIGGEST (INPUT,OUTPUT);

VAR DATA1,DATA2,DATA3,MAXIMUM: INTEGER;
PROCEDURE ^RGER(FIRST,SECOND:INTEGER;VAR RESULT:INTEGER);

(exactly as^previous version of LARGER procedure)
END;

PROCEDURE LARGEST(FIRST,SECOND,THIRD:INTEGER;VAR RESULT:INTEGER)
VAR GREATER: INTEGER;
BEGIN

LARGER(FIRST,SECOND,GREATER);
LARGER(GREATER,THIRD,RESULT)

END ;

BEGIN
READ(DATA1,DATA2,DATA3);
LARGEST(DATA1,DATA2,DATA3,MAXIMUM);
WRITELN(' THE LARGEST IS',MAXIMUM)

END.
$DATA

5 3 1 27

This job will print:

THE LARGEST IS 31

The procedure named LARGEST determines which of its first three
value parameters is largest and assigns the largest value to its
variable parameter, named RESULT. It accomplishes this by first
using LARGER to assign the larger of the first two parameters to
the variable GREATER, and by using LARGER again to assign the
larger of GREATER and the third parameter to RESULT. The
variable GREATER is declared as a variable inside the procedure
LARGEST. This variable is referenced only inside the LARGEST
procedure. It is a local variable and is not known to either
LARGER or the main program BIGGEST. To be accessible to a
program (or procedure) a variable must be either declared
that procedure or in a procedure that contains it.

in

158 PS/6: Subprograms

The procedures LARGER and LARGEST both have parameters named
FIRST and SECOND. This causes no trouble because the parameters
of LARGER are hidden from LARGEST and vice versa. As a rule it
is good programming practice to avoid duplicate names, as they
may confuse people reading a program. However, in some cases,
such as this example, it seems natural to repeat names in
separate procedures. Since duplicate names in separate
procedures are kept separate in Pascal, this causes no

dif ficulty.

We will now show an example of nesting with our BIGGER
function. We will use it in the following job to print the
largest of three numbers.

$JOB 'HUGH DEMPSTER'
PROGRAM BIGONE (INPUT,OUTPUT);

VAR DATA1,DATA2,DATA3: INTEGER;
FUNCTION bigger(FIRST,SECOND:INTEGER):INTEGER;

(Exactly as previous version of BIGGER function)
END;

BEGIN
READ(DATA1,DATA2,DATA3);
WRITELN(' LARGEST IS' ,BIGGER(BIGGER(DATA 1 ,DATA2) ,DATA3))

END.
$DATA

5 3 1 27

This job find
BIGGER function
that value to
the first actua
to the BIGGER
inner call to B
and 31. Then
returns the val
BIGGER is actua

s the larger of the first two data items using the
, and uses the BIGGER function again to compare

the third data value. In the WRITELN statement,
1 parameter to the BIGGER function is another call

function. This causes no trouble, because the
IGGER first returns 31, which is the larger of 5

the outer call to BIGGER compares 31 to 27 and
ue of 31. Using a call to BIGGER inside a call to
lly no more complicated than, say.

((5 + 31)+27)

This expression means add 5 and 31 and add 27 to the result. By
comparison,

BIGGER(BIGGER(5,31),27)

means find the larger of 5 and 31 and then find the larger of
this and 27.

We will now show another kind of subprogram nesting. If the
procedure named LARGER is to be used only inside the procedure
named LARGEST, we can give the definition of LARGER inside
LARGEST. This is done in the following job:

Actual Parameters and Formal Parameters 159

$JOB 'LARRY LIN'
PROGRAM BIGONE (INPUT,OUTPUT);

VAR DATA1,DATA2,DATA3,MAXIMUM: INTEGER;

(* DECLARATION OF LARGEST, WITH LARGER NESTED INSIDE IT ♦)
PROCEDURE LARGEST(FTRST,SECOND,THIRD:INTEGER;VAR RESULT:INTEGER)

VAR GREATER: INTEGER;
PROCEDURE LARGER(FIRST,SECOND:INTEGER;VAR RESULT:INTEGER);

(Exactly as previous version of LARGER procedure)
END;

BEGIN
LARGER(FIRST,SECOND,GREATER);
LARGER(GREATER,THIRD,RESULT)

END;

(* BODY OF MAIN PROGRAM *)
BEGIN

READ(DATA1,DATA2,DATA3);
LARGEST(DATA1,DATA2,DATA3,MAXIMUM);
WRITELN(' THE LARGEST IS',MAXIMUM)

END.
$DATA

5 3 1 27

The job works just like the previous job which contains a
procedure named LARGEST. The only difference is that since
LARGER has been hidden inside LARGEST, the LARGER procedure is no
longer available for use in the main program. The fact that
LARGER and LARGEST have formal parameters with the same names
does not cause trouble; each procedure will use its own local
meanings for the names FIRST, SECOND and RESULT. This example
has shown how a procedure declaration can be nested inside
another procedure declaration.

ACTUAL PARAMETERS AND FORMAL PARAMETERS

We have introduced two terms in connection with procedures
and functions: actual parameters and formal parameters. The
fo^im^L parameters are the identifiers used in the declaration of
a subprogram for information that is to be fed into a subprogram
or, in the case of procedures, to be given out. Actual
parameters are the expressions (often variables) in the calling
procedure that are to be put into correspondence with the
subprogram formal parameters. And there must be a one-to-one
correspondence between the number and type of the actual
parameters and the formal parameters.

Each formal parameter is declared to be a variable parameter
by specifying VAR or a value parameter by not specifying VAR.
Procedures can have both kinds of formal parameters but functions
can have only value parameters.

160 PS/6: Subprograms

All
effective
done by
parameter
procedure
the value
actual pa

references to variable parameters in a procedure
ly refer to the corresponding actual parameter. This is
means of pointers to the locations that hold the actual

s. These pointers are set automatically at the time the
is called. When the procedure is executing, each time

of a variable parameter is changed the corresponding

rameter is effectively altered.

An actual parameter corresponding to a var
parameter is restricted to be a variable such as
cannot be an expression or constant such as X+1
restriction is made so that changing the actual par
sense, for example, it makes sense to change the val
but we cannot change the value of 25.

iable formal
GREATER and
or 25. This

ameter makes
ue of GREATER

Value parameters are different from variable parameters and
can receive expressions and constants, as well as variables, as
actual parameters. The value of the actual parameter is used to
give an initial value to the formal parameter. After this
initialization, there is no relation between the actual and
formal parameters, and the value parameter acts just like a local

variable.

Here is a diagram to show the association between formal
parameters and actual parameters for the program BEST given as
the first example of the use of a procedure. The directions of
the arrows shows the direction of flow of the data.

PROCEDURE LARGER
FIRST <-
SECOND <-
RESULT <-->

PROGRAM BEST
DATA1
DATA2
MAXIMUM

FIRST and SECOND are value parameters and receive data from the
program. These values are stored on entering the procedure LARGE
and are the values contained in DATAl and DATA2. RESULT is a
variable parameter which is assigned a value in the procedure;
this value is assigned to the variable MAXIMUM of the program
BEST.

The formal parameters of a subprogram are associated with
actual parameters at the time the subprogram is called, so a
subprogram may be used in the same program with different sets of
actual parameters in other statements. Notice that local
variables are ordinary variables in the subprogram. These local
variables cannot be referenced outside the subprogram. Each time
the subprogram is called, these variables must have values before
being used, because their values from any previous calls are
discarded.

Array Variables and Constants as Actual Parameters 161

ARRAY VARIABLES AND CONSTANTS AS ACTUAL PARAMETERS

We will do another simple example to show how array variables
and constants can be used as actual parameters. Suppose we write
a procedure that will ^dd the elements of an integer array, LIST,
of N elements and call the total SUM. Let us name the procedure
TOTAL. The type of any array variable used as a parameter must
be defined in the calling program. Here is the declaration for
the procedure TOTAL.

(* ADD THE N ELEMENTS OF LIST ★)
PROCEDURE TOTAL(LIST; INTARRAYfN: INTEGER;VAR SUM: INTEGER);

VAR I: INTEGER;
BEGIN

SUM:-0;
FOR I:-1 TO N DO

SUM:-SUM+LIST[I]
END;

Now let us write a calling program for this:

$JOB 'LARRY LAFAVE'
PROGRAM BILL {INPUT,OUTPUT);

TYPE INTARRAY-ARRAYl1..10] OF INTEGER;
VAR INVOICE: INTARRAY;

I,GROSS: INTEGER;
(include declaration of TOTAL procedure here)
BEGIN

FOR I;“1 TO 5 DO
READ(invoice!I 1) ;

TOTAL(INVOICE,5,GROSS);
WRITELN(' GROSS-',GROSS)

END.
$DATA

25 36 21 7 2

The output will be

GROSS- 91

In this example, notice that the actual parameter INVOICE is in
correspondence with the parameter LIST. The declaration of LIST
must be of the same type as INVOICE. This type, namely INTARRAY,
is defined in the main program. It is a user-defined type.

In this example, we have a constant 5 as the actual in
correspondence with the value parameter N. When the procedure is
entered, N is assigned the actual parameter's value, which is 5.
After that N can be used or changed without any effect on the
actual parameter.

When the TOTAL procedure is called, the entire INVOICE array
is copied into the LIST array, because LIST is a value parameter.
Copying of big arrays is inefficient and can be avoided by

7 62 PS/6: Subprograms

declaring the array formal parameter using VAR. With VAR we have
a variable parameter instead of a value parameter, so instead of
copying all of INVOICE into LIST, a pointer to INVOICE is used
instead. With this change, our TOTAL procedure still works as
before. References in the procedure to LIST[1] will then point
at INVOICEfI]. There is no location in the memory identified by
LIST[1], but there is for INVOICE[1], and LIST[1] simply points
to invoice!1 I .

Pascal requires that the type of each formal parameter be
given by a type identifier. For example, the following would not
be allowed

PROCEDURE TOTAL (LIST: ARRAY[1..10] OF INTEGER; etc)

We avoided this problem by using

TYPE intarray-array! 1..101 OF INTEGER;

in the main program and then declaring LIST to be of type
INTARRAY . In a similar way, the result type of a function must
be given by a type identifier and for functions this type cannot
be an array or record; we will talk about records in a later
chapter.

GLOBAL AND LOCAL VARIABLES

Any variable declared inside a procedure is said to be local
to that procedure. It is a local variable. Variables declared
in a main program are available by the same name to all
subprograms whose declaration is nested in the main program. We
say that variables declared in the surrounding program are globa1
to the nested program. Notice that the same variable identifier
I is used in the main program BILL and also as a local variable
in the procedure TOTAL. These are treated as absolutely separate
variables. These is no need to worry about accidental
coincidences between names of local and global variables. Inside
the procedure, the local one is used exclusively. Outside the
procedure, the one local to the procedure is not visible.

in
par
bee
par
thr
inf
cus
for
in
the
Var

The statements inside a subprogram can use variables
the surrounding program without passing them thr(
ameter list. We have not done this in any example
ause our purpose in having subprograms was to sepa:
ts of the program completely; the only communication
ough the list of parameters. Sometimes, if a great
ormation is to be passed, and if the procedure
tom-made exclusively for your own program, it is ap]

the subprogram to reference variables that are decli
the main program. Remember we call such variables

subprogram since they are declared in a surrounding
iables that are declared in the subprogram are sai<

declared
ugh the

so far,
ate the
has been
deal of
is being
ropriate
red only
obal to
program,

to be

Chapter 11 Summary 163

local to that subprogram. Sometimes we refer to the scope of a
variable. The scope of a local variable in the subprogram is the
subprogram itself. A global variable has a larger scope; its
scope is the main program and the subprogram. Variables are
considered local or global depending upon where they are
declared; similarly user-defined constants, types and subprograms
are also either local or global. A procedure can both change and
read global variables but a function should only read them.

CHAPTER 11 SUMMARY

In this chapter we have introduced subprograms. Subprograms
allow us to build up programs out of modules. The reasons for
using subprograms in programs include the following:

1. Dividing the program into parts which can be written by

different people.

2. Dividing a program into parts which can be written over a

period of time.

3. Making a large program easier to understand by building it up
out of conceptually simple parts.

4. Factoring out common parts of a program so they need not be
written many times within a program.

5. Factoring out commonly-used logic so that it can be used in a
number of different programs.

6. Separating parts of a program so they can be individually

tested.

There are two kinds of subprograms in Pascal; procedures and
functions. Essentially, a procedure provides a new kind of
Pascal statement and a function provides a new kind of operation.
The following important terms were discussed in this chapter.

Subprogram declaration - means giving the meaning of a subprogram
to the computer. Subprogram declarations in Pascal must come
after constant definitions, type definitions, and variable
declarations. Procedures can be declared using the following

form:

164 PS/6: Subprograms

PROCEDURE identifier[([VAR] identifieri,identifierI :type
I;[VAR] identifierl,identifierl rtypel)];

[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statementl;statement I
END;

The curly brackets indicate zero or more repetitions of what
is inside them. The square brackets indicate that the
enclosed item is optional. Procedures may have no parameters
whatsoever in which case the procedure's identifier has no
list in parentheses following it.

Functions can be declared using the following form:

FUNCTION identifier[(identifier!,identifierl:type
I;identifier!,identifierl:type 1)]:type;

[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statement!; statement I
END;

If a function has no parameters, the parameters and their
enclosing parentheses are omitted. Functions must not have
any variable parameters. The function is given a value by
assigning to its name in the function's body. The type of a
function is given following the list of formal parameters and
must be a named type.

Procedure (or function) name - follows the rules for variable
identifiers.

Calling a procedure (invoking a procedure) - causing a procedure
to be executed. A procedure is called by a statement of the
form

procedure name(actual parameters);

If the procedure has no
parameters with their end
function is called by
parenthesized list of actu
expression. Value actua
which yield a value of the
must be variables.

formal parameters, then the actual
osing parentheses are omitted. A
using its name, followed by a

al parameters if required, in an
1 parameters may be any expressions
right type. VAR actual parameters

Returning from a procedure or function - terminating the
execution of a subprogram and passing control back to the
calling place. When the end of a procedure is reached, there

Chapter 11 Summary 165

is a return to the statement just beyond the calling
statement. After a function is finished it causes the
returned value to be used in the expression containing the
function reference.

Actual parameters - A call to a procedure or function can pass it
actual parameters. These must be the same in number,
sequence, and type as the formal parameters.

Formal parameters - the list of parameters that are to be used by
the procedure and produced as results. Information to be
used can be passed in through a value parameter; information
passed out must go through a variable parameter.
Declarations of variable parameters are prefaced by the
keyword VAR. All parameters must be typed in the procedure
heading. Parameters that are arrays must be given a type
that is named in the calling procedure. The parameter type
is given after the identifier of the parameter and separated
from it by a colon.

Value parameters - those formal parameters in a procedure or
function heading that are not preceded by the keyword VAR are
passed to the procedure as values. The actual arguments
corresponding to value parameters can be any expression that
evaluates to a value of the same type as the formal
parameter.

Variable parameters - those formal parameters in a procedure
heading that are preceded by the keyword VAR. Assignments
may be made to variable parameters in the procedure and such
assignments are equivalent to assignments to the actual
parameter that is in correspondence with the formal variable
parameter. Functions may not have variable parameters.

Scope - of a variable is the extent of the program over which the
variable is meaningful. Local variables have a meaning only
within the subprogram where they are declared.

166 PS/6: Subprograms

CHAPTER 11 EXERCISES

1. What does the following program print? What are the formal
parameters and actual parameters in this program?

PROGRAM NUMBERS (INPUT,OUTPUT);
VAR I,MAGNITUDE: INTEGER;
PROCEDURE ABSOLUTE(K: INTEGER; VAR L: INTEGER);

BEGIN
IF K>-0 THEN

L : -K
ELSE

L : --K
END;

BEGIN
FOR I:--2 TO 2 DO

BEGIN
ABSOLUTE(I,MAGNITUDE);
WRITELN(MAGNITUDE)

END

END. ^ \ p

2. What does the following program print? What are the parameters
and arguments in this program?

$JOB 'TOM HULL'
PROGRAM WEATHER (INPUT,OUTPUT);

TYPE REALARRAY-ARRAY[1..31] OF REAL;
VAR TEMPERATURE,RAIN; REALARRAY;

DAY,TIME: INTEGER;
PROCEDURE AVERAGE(VAR LIST: REALARRAY; HOWMANY: INTEGER);

VAR TOTAL: REAL;
I: INTEGER;

BEGIN
TOTAL:■0;
FOR I:- 1 TO HOWMANY DO

TOTAL:-TOTAL + LIST[I 1 ;
WRITELN(TOTAL/HOWMANY)

END ;
BEGIN

READ(TIME);
FOR DAY:-1 TO TIME DO

READ(TEMPERATURE[DAY],RAIN[DAY]);
WRITE(' AVERAGE TEMPERATURE:');
AVERAGE(TEMPERATURE,TIME);
WRITE(' AVERAGE RAINFALL:');
AVERAGE(RAIN,TIME)

END .
$DATA

5 45.0 0 47.2 0 48.0 0.3 47.5 2.1 48.0 0

Chapter 11 Exercises 167

3. Write a procedure that reads an array of names counting how
many it gets and another which sorts the array of names into
alphabetic order. For example, your procedure could be used in
the following program:

PROGRAM ORDER(INPUT,OUTPUT);
TYPE NAMETYPE-PACKED ARRAY[1..20] OF CHAR;

LISTTYPE-ARRAY[1..1001 OF NAMETYPE;
VAR WORKERS: LISTTYPE;

I,NUMBER: INTEGER;

PROCEDURE READLIST(VAR COUNT: INTEGER ; VAR PEOPLE : LISTTYPE)
(you write this part)
END;

PROCEDURE SORT(LENGTH: INTEGER; VAR NAMES: LISTTYPE);
(You write this part)
END ;

BEGIN

READLIST(NUMBER,WORKERS);
SORT(NUMBER,WORKERS);
FOR I:-1 TO NUMBER DO

WRITELN(WORKERS[I])
END.

4. What does the following procedure do? Write a small program
which uses this procedure.

PROCEDURE METRIC(VAR LENGTH: REAL);
BEGIN

LENGTH:-2.54*LENGTH
END ;

5. What does the following procedure do? Write a small program
which uses this procedure.

FUNCTION CONVERT(VAR INCHES: REAL): REAL;
BEGIN

CONVERT:-2.54*INCHES
END;

iJii.. r

wH * ^

rs T’-tf;; frx^fr.*> A

I ^’•*-4

»tT

rOtA

'
> *MI • ’

V %;¥ .

«
O '

' r ■ -■ * • I' ■«

:iOir«

♦ ;iinK

t ••» 1..M I
tai

►.y 5»i
■ ■' ^i n
.•'• /npi

• '

X

v

, r ♦ t^r, r - ■ ‘) s>

’ -
1'. T « - ?<,' i •■

♦ ’ . "V/

i-*. *

li ^

/ ^

^ . ‘ -. ■ -i «. • <ll . • - M

J' 'ar:>"-:?, • - ('•i -

V W - • r

k^^'illkji^ r

I*

. *

*

f

J

i lif' %

‘.H
:.■?•

1^

Chapter 12

MODULAR PROGRAMMING

In the last chapter we learned how to use subprograms in the
Pascal language. One of the important purposes of subprograms in
programming languages is to divide programs into parts - parts
that are convenient to use and easy to understand. This idea of
dividing a program into parts is called modular programming. In
this chapter we will show how a program can be divided into
convenient modules; each of these modules will be a procedure.

A PROBLEM IN BUSINESS DATA PROCESSING

We will illustrate modular programming by solving a problem
which might arise in a small business. Suppose that Acme
Automotive Supplies uses a computer to help keep track of its
customers' accounts. For each customer, there is an account
card, giving the customer's name, account number, credit limit
and balance owing to Acme.

For example. Cooks Garage has account number 14 and presently
owes $28.32 to Acme. Cooks Garage is allowed a credit limit of
$200.00; this means that if Cooks Garage is less than $200.00
behind in paying its bills to Acme, Acme will not press for
payment. This information is recorded on a punched card as
follows:

COOKS GARAGE 14 20000 2832

A field of width 15 characters is reserved at the beginning of
the card for the customer's name. Because it is the first item
on the card we can count on blanks to be present in the input if
the name is less than 15 characters. To avoid the use of decimal
points, a dollar amount such as $200.00 is given in cents as
20000 .

169

170 Modular Programming

The payments to Acme from its customers are recorded on
transaction cards. Each transaction card gives a customer's
account number and the amount of a payment by the customer. For

example, the card

14 2832

records the fact that $28.32 was received from the customer with
account number 14. Since Cooks Garage corresponds to the account
number 14, this means that Cooks Garage has paid $28.32 to Acme.

The account man ager
account cards and the month

accounts as they sta nd aft
that corresponding to the a

COOKS GARAGE 14 200

there is only the one trans

for Acme needs a program to read the
:ion cards and print the
lents. For example, suppose

2832

14 2832

The account manager would like the program to print the fact that
account number 14, for Cooks Garage, has a credit limit of 20000
and a current balance owing of 0. The program is supposed to
read data such as:

COOKS GARAGE
JONES REPAIR

XXX
6

1 4
6

- 1

1000
2832
1000

0

1 4
6

- 1

20000
5000

0

2832
8240

0
(more account cards)
(dummy account card)

(more transaction cards)
(dummy transaction card)

The program is to print the updated accounts;
the following should be printed.

a report such as

ACME AUTOMOTIVE SUPPLIES
ACCOUNTING REPORT

CUSTOMER ACCOUNT NO CREDIT LIMIT BALANCE

COOKS GARAGE
JONES REPAIR

1 4
6

20000
5000

0
6240

The account manager
He has told us that
an account number
transaction records

says that Acme has accounts for 16
each customer has one account card

can be any number from 1 to
are not in any particular order

customers.
and that
999. The

and the

Communication Among Modules 171

number of payments by a particular customer each month varies
widely - from no payment to quite a number of payments.

DIVIDING THE PROGRAM INTO PARTS

We need a program which reads the accounts, updates them
using the month's transactions and prints the updated accounts.
We start designing our program by dividing it into the three
parts:

Read accounts;
Update accounts;
Print accounts

Since Pascal does not provide a statement, "Read accounts," we
will write a Pascal procedure called READACCOUNTS. Our procedure
will have the following form:

PROCEDURE READACCOUNTS;
(declarations local to READACCOUNTS)
BEGIN

(statements)
END;

Similarly, we will write Pascal procedures called UPDATEACCOUNTS
and PRINTACCOUNTS. Assuming these three procedures are
available, then we can write:

READACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS

If our three procedures are written correctly, then this sequence
of three statements will solve our business data processing
problem.

We have divided our program into three parts, or modules.
Now we need to provide data so the parts can communicate.

COMMUNICATION AMONG MODULES

The procedure READACCOUNTS must have a place to store the
information from the account cards, so this information can be
used by the procedure UPDATEACCOUNTS. Similarly, the
UPDATEACCOUNTS procedure must store the updated account
information, so it can be printed by the PRINTACCOUNTS procedure.

To meet these communication needs, we can declare arrays for
the account numbers, customer names, credit limits and balances.
The following declaration creates the desired arrays:

7 72 Modular Programming

CONST MAXACCOUNTS-20;
NAMESIZE-15;
DUMMY--1; (* MARKS END OF DATA ♦)

TYPE RANGE-1..MAXACCOUNTS;
NAMETYPE-PACKED ARRAY[1..NAMESIZE1 OF CHAR;

VAR CUSTOMER: ARRAY[RANGE]OF NAMETYPE;
ACCOUNTNUMBER,CREDITLIMIT,BALANCE: ARRAY[RANGE]OF INTEGER

For possible future growth, we have allowed for more accounts
than Acme's present 16 accounts. The upper limit of 20 for the
arrays provides room for 19 accounts plus a dummy account. We
checked with the account manager to verify that 15 characters are
enough to record each customer's name.

We will use MAXACCOUNTS instead of 20 in our program. This
is so that the present limit on the number of accounts can be
easily increased by making a single change to our program, namely
to the definition of MAXACCOUNTS. We will also use NAMESIZE
instead of 15 and DUMMY instead of -1 so we can easily change the
field size for customer's names and the end-of-file marker. This
shows how CONST definitions can be used to isolate a particular
limit or decision so it can be conveniently modified later. In
many cases, definitions of constants, types and subprograms are
used in an analogous way to facilitate program maintenance.

We will place definitions in the main procedure, making them
global. This allows the procedures READACCOUNTS, UPDATEACCOUNTS
and PRINTACCOUNTS to access the arrays. The overall program
organization is:

(* READ, UPDATE AND PRINT ACCOUNTS FOR ACME ♦)
(♦ AUTOMOTIVE SUPPLIES. ♦)
PROGRAM ACCOUNT (INPUT,0UTPUT);

(declarations, such as for the ACCOUNTNUMBER array,
used for communication among procedures)

PROCEDURE READACCOUNTS;
(declarations local to READACCOUNTS)
BEGIN

(statements)
END ;

(definition for the UPDATEACCOUNTS procedure)
(definition for the PRINTACCOUNTS procedure)
BEGIN

READACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS

END.

The procedure READACCOUNTS will finish by reading the dummy
account card into the arrays. The procedures UPDATEACCOUNTS and
PRINTACCOUNTS Will recognize the end of the list of accounts when
they encounter the dummy account number -1

The three procedures communicate by changing and inspecting
the arrays. First, the READACCOUNTS procedure reads the
information on the account cards into four arrays. Next, the

Writing the Modules 173

UPDATEACCOUNTS procedure reads the transaction cards and updates
the account information accordingly. This updating will modify
the BALANCE array, but does not change the other three arrays.
Finally, the PRINTACCOUNTS procedure prints the updated accounts.
Note that this procedure does not change any of the four arrays.

WRITING THE MODULES

We are now ready to write the procedures because we have
designed the overall program structure and the data to be used
for communication among the three procedures.

We will start the READACCOUNTS procedure by writing a comment
to explain its purpose:

(♦ READ ACCOUNT CARDS INTO THE ARRAYS CUSTOMER, ♦)
(* ACCOUNTNUMBER, CREDITLIMIT AND BALANCE *)

Immediately following this comment will come the line;

PROCEDURE READACCOUNTS ?

Next will come the declarations for variables that are local to
the READACCOUNTS procedure. We are not ready to write these
declarations, because we have not yet designed the body of the
procedure.

The procedure requires a loop such as the following, which
repeatedly reads account cards.

Loop initialization;
WHILE(There are more account cards)DO

BEGIN
Read another card

END;

We can fill up the arrays starting with item 1, then it
so on. We will declare a variable called ITEM to keep t
the number of the item. The body of the loop, "Read
card," will use READ statements to read information f
account cards. But the loop body must also get ready
reading of the next card, and it must provide information
tested to see if "There are more account cards." Thi
accomplished by writing the loop body this way:

em 2 and
rack of
another

rom the
for the
to be

s can be

FOR J;-1 TO NAMESIZE DO
READ(CUSTOMER[ITEM][J]);

READLN(ACCOUNTNUMBER!ITEM],CREDITLIMIT[ITEM),BALANCE[ITEM]);
ACCOUNT:-ACCOUNTNUMBER[ITEM];
ITEM;-ITEM+1;

174 Modular Programming

We will declare ACCOUNT to be an integer variable; the loop is
terminated when ACCOUNT becomes -1. We now write "Loop
initialization" so that the loop is started correctly, and we

have:

ITEM:- 1 ;
(♦ SET ACCOUNT SO LOOP WILL START PROPERLY *)

ACCOUNT:-0;
WHILE ACCOUNTODUMMY DO

BEGIN
FOR J:-1 TO NAMESIZE DO

READ(CUSTOMER[ITEM] [J]) ;
READLN(ACCOUNTNUMBER[ITEM],CREDITLIMIT[ITEM],

BALANCE[ITEM]);
ACCOUNT:-ACCOUNTNUMBER[ITEM];
ITEM:-ITEM+1

END

This sequence of Pascal statements has the meaning:

Read in the account cards together with the dummy
account card;

The variable ITEM is left having as its value one more than the
number of accounts.

This completes the writing of the READACCOUNTS procedure.
Putting the pieces together, it looks like this:

(* READ ACCOUNT CARDS INTO THE ARRAYS CUSTOMER, *)
(* ACCOUNTNUMBER, CREDITLIMIT AND BALANCE *)
PROCEDURE READACCOUNTS;

VAR ITEM,ACCOUNT,J: INTEGER;
BEGIN

ITEM:- 1 ;
(★ SET ACCOUNT SO LOOP WILL START PROPERLY *)
ACCOUNT:-0;
WHILE ACCOUNTODUMMY DO

BEGIN
FOR J:-1 TO NAMESIZE DO

READ(CUSTOMER[ITEM][J]);
READLN(ACCOUNTNUMBERI ITEM] ,CREDITLIMIT[ITEM] ,

BALANCE[ITEM]);
ACCOUNT:-ACCOUNTNUMBER[ITEM] ;
ITEM:-ITEM+1

END
END ;

We have written the READACCOUNTS procedure using step-by-step
refinement. We started by deciding the purpose of the procedure.
Then we divided the procedure into pieces. Finally, we wrote the
pieces in Pascal.

The Complete Program 175

We will not give detailed descriptions of the writing of the
UPDATEACCOUNTS and PRINTACCOUNTS procedures. Similar methods can
be used in writing those two procedures.

THE COMPLETE PROGRAM

Assuming the other two procedures have been written, we can
put the pieces together to make the program given here.

(* READ, UPDATE AND PRINT ACCOUNTS FOR ACME *)
(* AUTOMOTIVE SUPPLIES *)
PROGRAM ACCOUNT (INPUT,OUTPUT)?

CONST MAXACCOUNTS-20;
NAMESIZE-15;
DUMMY--1; (* MARKS END OF DATA *)

TYPE RANGE-1..MAXACCOUNTS;
NAMETYPE-PACKED ARRAY[1..NAMESIZE] OF CHAR;

VAR CUSTOMER; ARRAY[RANGE]OF NAMETYPE;

ACCOUNTNUMBER,CREDITLIMIT,BALANCE; ARRAY[RANGE]OF INTEGER;

(♦READ ACCOUNT CARDS INTO THE ARRAYS CUSTOMER, ♦)
(* ACCOUNTNUMBER, CREDITLIMIT AND BALANCE *)
PROCEDURE READACCOUNTS;

(exactly as given previously)
END;

(♦READ TRANSACTION CARDS AND UPDATE THE ACCOUNTS ♦)
PROCEDURE UPDATEACCOUNTS;

VAR ITEM,ACCOUNT,PAYMENT; INTEGER;
BEGIN

READLN(ACCOUNT,PAYMENT);
WHILE ACCOUNTODUMMY DO

BEGIN
ITEM;- 1;
WHILE (ACCOUNTNUMBER [ITEM] OACCOUNT) AND

(ACCOUNTNUMBER [ITEM] ODUMMY) DO
ITEM;-ITEM+1;

IF ACCOUNTNUMBER[ITEM]-ACCOUNT THEN
BALANCE[ITEM] ;-BALANCE I ITEM]-PAYMENT

ELSE

WRITELN(' ERRONEOUS TRANSACTION ACCOUNT;',
ACCOUNT);

READ(ACCOUNT,PAYMENT)
END

END ;

(♦ PRINT THE ACCOUNTS ♦)
PROCEDURE PRINTACCOUNTS;

VAR ITEM; INTEGER;
BEGIN

WRITELN(' ACME AUTOMOTIVE SUPPLIES');
WRITELN(' ACCOUNTING REPORT');
WRITELN;

176 Modular Programming

WRITELN(' CUSTOMER ','ACCOUNTNO.
'CREDIT LIMIT BALANCE');

WRITELN;
ITEM:-1;
WHILE ACCOUNTNUMBERl ITEMlODUMMY DO

BEGIN
WRITELN(' ',CUSTOMER[ITEM],ACCOUNTNUMBER[ITEM]:5,

CREDITLIMIT[ITEM]:15,BALANCE!ITEM]:15);
ITEM:-ITEM+1

END
END ;

(* MAIN PROGRAM: READ, UPDATE AND PRINT ACCOUNTS *)
BEGIN

READACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS

END.

In this progr
advantage. The arr
are available t
PRINTACCOUNTS proc
PAYMENT, local to
declared three vari
Pascal because they

am we used local and global variables to
ays are declared in the main program so
O the READACCOUNTS, UPDATEACCOUNTS
edures. We made some variables, such

the procedures using them. Although
ables named ITEM, they are kept separate
were declared in different procedures.

our
they

and
as
we
by

USING MODULES

In our
namely, the
procedures.

example, we divided our program into
READACCOUNTS, UPDATEACCOUNTS and

three modules,
PRINTACCOUNTS

(* MAIN PROGRAM: READ, UPDATE AND PRINT ACCOUNTS ★)
BEGIN

* READACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS

END.

This main procedur
specifies the order of u
details about the modul
best understood separate
Many of these details
without changing either
of the program's overall

e is very easy t
sing the modules,
es. These details
ly, in the definit
can be changed ins
the main procedure
structure.

o underst
without g
are impo

ions of
ide a par
or our

a
i
r

t

nd because it
ving internal
tant, but are
the modules,
icular module
understanding

Programs that process business data typically have an
organization similar to that of our example. In particular, they
are often based on a set of modules which are called by a main
program. For larger and more complex programs, individual
modules may be composed of sub-modules, the sub-modules may be
composed of sub-sub-modules, and so on.

Modifying a Program 177

Our example is not a large program. Even though it is
relatively small, we have been able to make it simple by dividing
it into distinct parts. It is almost impossible for programmers
to write, understand or modify a large, complex program unless
the program is divided into distinct parts, each having a
relatively simple purpose.

MODIFYING A PROGRAM

It is common for programs to be changed during their
lifetimes. Sometimes a change is required to fix errors in the
program. Sometimes a change is required because the purpose of
the program is changed. In our program for Acme Automotive
Supplies we used named constants so certain changes could be made
by changing a single number. For example, we can change the
width of names by changing 15 in the definition of NAMESIZE,
instead of searching for all occurrences of 15 in the program.

Perhaps the account manager for Acme discovers that in
addition to the printing of all updated accounts, he needs a
separate list of customers whose credit limits have been
exceeded. This is an example of exception reporting; such
reporting helps managers by listing only those items that require
action.

When a useful program is modified, we call this program
maintenance. We do not maintain a program because it wears out!
Instead, we maintain a program when there are new requirements
for the program or there are errors in the program.

As an example of a program modification, we will take the
situation in which a credit exception report is required by the
Acme account manager. The program must list those customers
whose balance owing is greater than their credit limit. We
already have modules which read accounts, update them and print
them. Given the updated accounts, we need a module which prints
the names of customers with exceeded credit. The main procedure
is changed to this sequence of procedure statements:

READACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS j
PRINTCREDITEXCEPTIONS;

Using our old program, we add a new procedure named
PRINTCREDITEXCEPTIONS and invoke this procedure.

We are able to produce a program to print credit exceptions
vary easily. This is because our old program is easy to
understand and thus easy to modify.

Since our program is modular, we can use the pieces - the
modules - to build new programs. Suppose the Acme account
manager decides he needs a list of accounts both before and after

178 Modular Programming

the update. We can easily modify our program to meet this
requirement by changing the calls to:

READACCOUNTS;
PRINTACCOUNTS;
UPDATEACCOUNTS;
PRINTACCOUNTS;
(more procedure statements)

We simply use the PRINTACCOUNTS procedure twice - before and
after using UPDATEACCOUNTS. No modules need to be added or

changed.

CHAPTER 12 SUMMARY

In this chapter
in solving a simple
program containing
these modules was a

we showed how modular programming can be used
problem in data processing. We developed a
three modules to solve the problem. Each of

Pascal procedure.

The overall structure
by-step refinement. Once
problem to be solved,
into the three steps:

of our program was designed using step-
we had stated the data processing

we refined the idea "solve the problem"

Read accounts;
Update accounts;
Print accounts

We wrote three modules to carry out these steps.

Modules should be designed to per
activities, and they should use their par
variables in a straightforward manner,
carefully divided into good modules, it c
and maintained.

form conceptually simple
ameters and any shared

When a program has been
an be easily understood

CHAPTER 12 EXERCISES

All the exercises for this chapter are based on the program
which reads, updates and prints accounts for Acme Automotive
Supplies. Each exercise asks you to modify the program; you may
need to add new modules, change or improve old modules or change
the main program. When making these changes, be sure that old
comments are appropriately modified and new comments are added as
needed.

1. Add a new procedure named PRINTCREDITEXCEPTIONS that prints
each account having a balance greater than its credit limit.
Write the main program so that the accounts are read and updated,
then the credit exceptions are printed and then all of the
accounts are printed. Test the modified program.

Chapter 12 Exercises 179

2. Make modifications so that the number of accounts and the
number of transactions are printed before the listing of
accounts. Test the modified program.

3. Make the program less vulnerable to data errors by having it
check for and report the following problems:

(a) More accounts than can be stored in the arrays.

(b) Negative credit limits.

(c) Unlikely payments - negative or more than $999.99.

Test the modified program.

4. Modify the program so that it prints the total of the balances
of the accounts. Test the modified program.

>»»s-j r *

' ;**:« 'ii?y ■ . ••
^ f t vr i * . ti j J* ik.^ari -

. f» ‘ * .t ' I / »

« •- * * ii ^ . .' ^ .-;

•»Nt » ?

at •4;d4 ' i »•

■ >

i

■ 0

^ <• t » •
- f V 3 '

■-J

■(

4'-. '

r*^. jii

I

4

t

■▲
•ft

Chapter 13

SEARCHING AND SORTING

Whan a large amount of information is stored in a computer,
it must be organized so that you are able to get at the
information to make use of it. This problem of data retrieval is
at the heart of all business operations. Records are kept of
employees, customers, suppliers, inventory, in—process goods, and
so on. These records are usually grouped in some way into what
are called files. We might have, for example, a file of employee
records, a file of customer records, an inventory file, and so
on. Each file must be kept up to date.

A file that we all have access to is printed in the telephone
book. It consists of a series of records of names, addresses,
and telephone numbers. We say that there are three fields in
each of these records; the name field, the address field, and the
phone-number field. The file is in the alphabetic order of one
of the three fields, the name field. We say that the name field
is the key to the ordering of the file. The file is in
^lph^b®tic order on this field because that is how it can be most
useful to us for data retrieval. We know someone's name and we
want his phone number. We might also want his address and that
too is available. The telephone company also has the same set of
records, ordered using the phone-number field as the key.

In this chapter we will be investigating how a computer can
search for information in a file and how records can be sorted.

LINEAR SEARCH

One way to look for data in a file is to start at the
beginning and examine each record until you find the one you are
looking for. This is the method people use who do not have large
files. But for more than about 12 records it is not a good filing
system. It will serve as an example to introduce us to the idea
of searching mechanically and give us a bad method to compare our
better methods to. We will create a file which consists of names

181

182 Searching and Sorting

and telephone numbers but the file will not be ordered by either

name or number.

We will keep the file in two one-dimensional arrays, one
called NAME and one called NUMBER. NUMBER!I 1 will be the correct
telephone number for NAME[I]. We will read this file, then read
a list of names of people whose phone numbers are wanted. Here
is the program to do this job. We are assuming that our file of
names and phone numbers is punched so that the name is left-
justified in the first 20 columns followed by the phone number in

the next 8 columns.

$JOB 'DON MCQUARRIE'
(♦ LOOK UP PHONENUMBERS IN DIRECTORY *)
PROGRAM phones!INPUT,OUTPUT);

CONST NAMEWIDTH-20;
NUMBERWIDTH-8;
DIRECTORYSIZE-50;
DUMMY-'*';

TYPE NAMETYPE-PACKED ARRAY[1..NAMEWIDTH1 OF CHAR;
NUMBERTYPE-PACKED ARRAY[1..NUMBERWIDTH] OF CHAR;
directory-array!1..DIRECTORYSIZE] OF NAMETYPE;
DIRECTORYINDEX-0..DIRECTORYSIZE;

VAR NAME: DIRECTORY;
NUMBER:array!1..DIRECTORYSIZE] OF NUMBERTYPE;
FRIEND,BLANKS: NAMETYPE;
FILESIZE,!: DIRECTORYINDEX;
J: 0..NAMEWIDTH;
K: 1..NUMBERWIDTH;

BEGIN
(* READ IN FILE OF NAMES AND NUMBERS *)
I: -0 ;
REPEAT

I:-1+1 ;
FOR J:-1 TO NAMEWIDTH DO

READ(NAME!I]!J1);
FOR K:-1 TO NUMBERWIDTH DO

READ(number!I 1 !k1) ;
READLN

UNTIL NAME!I]!1]-DUMMY;
FILESIZE:-I-1;
FOR J:-1 TO NAMEWIDTH DO

BLANKS!J]:-' ';
WHILE NOT EOF DO

BEGIN (* LOOK UP FRIEND'S NUMBER *)
FRIEND:-BLANKS;
J : - 0 ;
WHILE (NOT EOLN) AND (J<NAMEWIDTH) DO

BEGIN
J:-J+ 1 ;
READ(FRIEND!J 1)

END ;
READLN;

, WHILE (FRIENDONAME ! I]) AND (I<-FILES I ZE) DO

Binary Search 183

1 : -1+ 1 ;
IF FRIEND-NAME[I]

WRITELN(FRIEND
ELSE

END
END.

$DATA
PERRAULT,R.
BORODIN,A.
COOK,S.A.
ENRIGHT,W.H.

BORODIN,A.
BERNSTEIN,?.

WRITELN(FRIEND

483-4865
782-8928
763-3900
266-1234
999-9999

(

THEN^

NUMBER I I])

'UNLISTED')

The output will be

BORODIN,A. 782-8928
BERNSTEIN,?. UNLISTED

We have stored the phone number as a character string because of
the dash between the first three and the last four digits.

TIME TAKEN FOR SEARCH

In the last section we developed a program for a linear
search. The searching process consists of comparing the friend's
name, FRIEND, with each name in the file of names NAME I 1],
NAMEI2], NAME[31, and so on until either the name is found or the
end of the file is reached. For a small file, a linear search
like this one may be fast enough, but it can be time-consuming if
the file is lengthy.

If there are N records in the file and the name is actually
in the file, then on the average there will be n/2 comparisons.
The largest number of comparisons would be N if the name were
last in the file, the least number would be 1 if the name were
first. A file of 1000 names would reguire 500 comparisons on the
average. This gets to look rather formidable. It is for this
reason that we do something to cut down on the effort. What we
do is to sort the file into alphabetic order and then use a
method of searching called binary searching. We will look at
sorting later, but first we will see how much faster binary
searching can be.

BINARY SEARCH

The telephone book is sorted alphabetically and the
most of us use for looking up numbers is similar to the
known as binary searching. We start by opening the
where we think we will find the name we are looking for

technique
technique
book near

We look

184 Searching and Sorting

at the page that is open and compare any name on it with the name
being sought. If the listed name is alphabetically greater we
know we must look only between the page we are at and the
beginning of the book. We have eliminated the second part of the
book from the search. This process is repeated in the part that
might contain the name until we narrow the search down to one

page.

In binary searching, instead of looking where we think we
might find the name, we begin by looking at the name in the
middle of the file and discard the half in which it cannot lie.
This process cuts the possible number of names to be searched in

half at each comparison.

A file of 16 names would require a maximum of 4 comparisons:
one to cut the list to 8, another to 4, another to 2, and another
to 1. Of course, we might find it earlier, but this is the most
^ork we have to do. It is the maximum number of comparisons.
With a linear search of 16 records we might have to make 16
comparisons, although 8 is the average. If we have a file of
1024 records, the binary search takes a maximum of 10

ing how many times you
Put mathematically.

comparisons. This can be calculated by s

must divide by 2 to get down to 1 recor

1024 is equal to

2*2*2 *2*2*2*2*2*2*2

Just one mor e comparison. making 1 1

search a list of 2048 entries. Then 4096

comparisons. You can see how much

searching can be when the file is a long

altogether, will let you
can be done with 12
more efficient binary

one.

A PROCEDURE FOR BINARY SEARCH

We will now design a program for doing a binary search and
write it so that it can be called as a procedure. When we write

SEARCH(BASICFILE,KEY,SIZE,LOCATION)

we are asking for the value of LOCATION for which
BASICFILE[LOCATION]-KEY, where BASICFILE is an array of items
declared as of type NAMETYPE. If the KEY is not in the file,
LOCATION will be set to zero.

We will develop the algorithm for the binary search in two
stages as an illustration of step-by-step refinement. We will
write out our proposed solution in a form that is a mixture of
English and Pascal.

\

A Procedure for Binary Search 185

Set LOCATION to zero in case KEY is not in BASICFILE;

WHILE(there is more of the file to search) DO
BEGIN

Find middle of file;

IF middle value matches KEY THEN
BEGIN

Set LOCATION to middle;

Discard remainder of file
END

ELSE

IF middle value comes after KEY THEN

Discard last half of remainder of file
ELSE

Discard first half of remainder of file
END;

It will be important to know the FIRST and LAST of the

remainder of the file at any time in order to establish the

MIDDLE and to discard the appropriate half. We initially set

FIRST to 1 and LAST to SIZE. Then to find the middle we use

MIDDLE:-TRUNC((LAST+FIRST)/2);

It will not matter that this division is truncated as the process

of finding the middle is approximate when the number of entries

in the file is an even number. Refining the expression, "Discard
last half of remainder of file," becomes

LAST:-MIDDLE-1;

and, "Discard first half of remainder of file," becomes

FIRST:-MIDDLE+1;

Notice that we are discarding BASICFILE[MIDDLE 1 as well in each
case. The procedure can now be written:

186 Searching and Sorting

(* LOCATE KEY USING BINARY SEARCH ★)
PROCEDURE SEARCH(BASICFILE:DIRECTORY; KEY:NAMETYPE;

SIZE:INTEGER; VAR LOCATION:DIRECTORYINDEX);

VAR FIRST,LAST,MIDDLE: INTEGER;

BEGIN
(♦ SET LOCATION TO ZERO FOR CASE OF KEY NOT IN FILE *)

LOCATION:-0;
(* INITIALIZE THE SEARCH LOOP *)

FIRST:-1;
LAST:-SIZE;
(* SEARCH UNTIL FILE IS EXHAUSTED *)
WHILE FIRST<-LAST DO

BEGIN
MIDDLE:-(FIRST+LAST) DIV 2;
IF BASICFILE[MIDDLE]-KEY THEN

BEGIN
LOCATION:-MIDDLE;
(* DISCARD ALL OF FILE *)
FIRST:-LAST+1

END
ELSE

IF BASICFILE[MIDDLE]>KEY THEN
(♦ DISCARD LAST HALF ♦)
LAST:-MIDDLE-1

ELSE
(♦ DISCARD FIRST HALF *)
FIRST:-MIDDLE+1

END
END;

A program that uses this procedure can now be written. We will
use it to look up telephone numbers. We will replace the
following serial search in the PHONES program:

1-1 ;
WHILE (FRIENDONAME [I 1) AND (K-FILESIZE) DO

I : -1+1 ;
IF FRIEND-NAME[I] THEN ...

This becomes:

SEARCH(NAME,FRIEND,FILESIZE,I) ;
IF lOO THEN . . .

We are assuming that the file of names is sorted alphabetically.
The procedure SE.ARCH should be included right after the
declaration of variables in the main program.

You will notice that the binary search program has more
instructions than the linear search that it is replacing. Each
step is more complicated, but the whole process is much faster
for a large file because fewer steps are executed.

Searching by Address Calculation 187

SEARCHING BY ADDRESS CALCULATION

We have seen that the efficiency of the searching process is
very much improved by having a file sorted. The next method of
searching uses data organized in a way so there is "a place for
everything, and everything in its place".

Suppose you had a file of N records numbered from 1 to N. If
you knew the number of the record, you would immediately know the
location. The number would be the index of the array that holds
the file entries. Each entry would have a location where it
belonged. The trouble usually is to find the location of a
record when what you know is some other piece of information such
as a person's name.

Files are sometimes arranged so that they are organized on
serial numbers that can be calculated from some other information
in the record. For example, we could take a person's name and,
by transforming it in a certain definite way, change it into a
serial number. This transformation often seems bizarre and
meaningless, and we say the name is hash—coded into a number.
When the number has been determined, the location is then
definite and you can go to it without any problem.

Usually with hash coding it happens that several records have
the same hash code. This means that, instead of the code
providing the address of the exact record you want, what you get
is the address of a location capable of containing several
different records. We call such a location a bucket or bin. We
then must look at the records in the bin to find the exact one we
are interested in. Since the number is small they need not be
sorted. A linear search is reasonable when the number of items
is small.

If fixed-size bins are used to store the file, it is
important to get a hash coding algorithm that will divide the
original file so that roughly the same number of records is in
each bin.

As an example of a hash-coding algorithm, suppose that we had
1000 bins and wanted to divide a file of 10,000 records into the
bins. The file might already have associated with each record an
identifying number. For example, it might be a Social Insurance
number or a student number. These numbers might range from 1 to
1,000,000. One way to divide the records into bins would be to
choose the last three digits of the identifying number as the
hash code. Another hash code might be formed by choosing the
third, fifth, and seventh digit. The purpose is to try to get a
technique that gives about the same number of records in each
bin. More complicated hashing algorithms may be necessary.

188 Searching and Sorting

SORTING

We have already developed a sorting program as an example of
step~by-step refinement in Chapter 9. The method we used is
called a bubble sort. Each pair of neighboring elements in a
file is compared and exchanged, to put the element with the
larger key in the array location with the higher index. On each
exchange pass, the element with the largest key gets moved into
the last position. The next pass can then exclude the last

position because it is already in order.

We have shown that the binary search technique is much more
efficient for a large file than a linear search. In the same
way, although a bubble sort is a reasonable method for a small
file, it is not efficient for a large file. What we usually do
to sort a large file is to divide it into a number of smaller
files. Each small file is sorted by a technique such as the
bubble sort, then the sorted smaller files are merged together

into larger files.

We will look at an example in which two sorted files are
merged into a single larger sorted file.

SORTING BY MERGING

We will develop a procedure called MERGE to merge FILEl,
which has SIZE1 records ordered on the field KEYFILE1, with
FILE2, which has SIZE2 records ordered on the field KEYFILE2, and
store it in FILE3. We will invoke this procedure with the

statement

MERGE(KEYFILE1 ,SIZEl ,KEYFILE2,SIZE2,KEYFILE3) ;

Efficiency of Sorting Methods 189

Here is the MERGE procedure:

(♦ MERGE TWO SORTED FILES *)
PROCEDURE MERGE(KEYFILE1:FILETYPE; SIZE1:INTEGER;

KEYFILE2:FILETYPE; SIZE2:INTEGER; VAR KEYFILE3:FILETYPE);
VAR 11,12,13: INTEGER;
BEGIN

11 :- 1 ;
12 : - 1 ;
I3:»1 ;
(* MERGE UNTIL ALL OF ONE FILE IS USED *)
WHILECI1<-SIZE1) AND (I2<-SIZE2)DO

BEGIN

IF KEYFILE1[II]<KEYFILE2[12ITHEN
BEGIN

KEYFILE3[13] :-KEYFILE1 III];
II:-II+1

END
ELSE

BEGIN
KEYFILE3I 13] :-KEYFILE2I 121 ;
12:-12+ 1

END;
13:-13+1

END ;
(* ADD REMAINING ITEMS TO END OF NEW FILE *)
WHILE I1<-SIZE1 DO

BEGIN
KEYFILE3113):-KEYFILE1[ill;
II :-I1 + 1 ;
13:-13+1

END ;
WHILE I2<-SIZE2 DO

BEGIN
KEYFILE3I 131 :-KEYFILE2[12] ;
12:-12+1 ;
I3:-I3+1

y END
END;

EFFICIENCY OF SORTING METHODS

The number of comparisons required to merge the two
previously sorted files in our example is SIZE1+SIZE2. To sort a
file of length N by the bubble sort we can count the maximum
number of comparisons that are needed. It is

(N-1)+(N-2)+(N-3)+...+1

This series can be summed and the result is

N(N-1)/2 which is

190 Searching and Sorting

nV2 - N/2

2

When N is large, the number of comparisons is about N /2, since
this is very large compared to n/2. We say the execution time of
the algorithm varies as n* sorting 100 items takes 100 times the
number of comparisons that sorting 10 items does. We will now
make calculations to see why sorting by merging is useful for
long files. To sort a file of N items, by first using a bubble
sort on two files N/2 in length then merging, requires N /4-N/2
for the bubble sort and N for the merge. This makes a
combination total of

N /4 + n/2 comparisons.

Using a bubble sort on the whole file gives a result of

n/2 - n/2 comparisons.

When N is 100, the bubble sort merge method requires 2,550
comparisons, the straight bubble sort requires 4,950 comparisons.
We can keep dividing files and subfiles, sorting them by merging,
with further improvements. In the limit we have a successive
merge sort that is efficient enough to be used for large files.

CHAPTER 13 SUMMARY

This
that are
files of

chapter has presented methods of searching and sorting
used in computer programs. These methods manipulate
records. Each record consists of one or more fields.

A search is based on a key, such
appears as one field in a record of a f
locates the desired record by starting
inspecting one record after another until
A linear search is slow and should not be
faster search method, such as binary sear
large files.

as a person's name, that
ile. A linear search
at the first record and
the given key is found,
used for large files; a

ch, should be used for

A binary search requires that the file
to the key field of the records. An unor
ordered using one of the sorting methods gi
The binary search inspects the middle record
half of the file contains the desired reco
record of the correct half is inspected,
quarter of the file contains the desired reco
the record is located.

be ordered according
dered file can be
ven in this chapter,
to determine which
rd. Then the middle
to determine which
rd, and so on, until

If the key is a number that is identical to the index of the
desired record then no searching is required, because the key
gives the location of the record. Sometimes the key can be
manipulated to create a hash code that locates a small set of
records, called a bucket, that includes the desired record.

Chap ter 13 Exercises 191

A file of records can be ordered using the bubble sort. This
method repeatedly passes through the file, interchanging adjacent
out-of-order records until all records are in order. The bubble
sort is slow and should not be used for large files; a faster
sorting method, such as sorting by merging, should be used for
large files.

A file can be sorted by merging in the following manner.
First the file is divided into two sub-files and each of the sub¬
files is sorted by some method, such as the bubble sort. Then,
starting with the first records of the two sub-files, the ordered
file is created by passing through the sub-files and successively
picking the appropriate (smaller key or alphabetically first key)
record. If the sub-files are large, they should be sorted by a
fast method, such as a merge, instead of by a bubble sort.

CHAPTER 13 EXERCISES

1. The students for a particular high-school class have their
names recorded on cards, for example;

ABBOT, HAROLD

These cards are arranged alphabetically. Another deck of cards
contains the names of newly-entered students for the same class;
these cards are also alphabetically arranged. Write a program
that reads the two sets of cards and prints out all the names
alphabetically. Your program should read the smaller deck first
and store its names in an array. Then the alphabetized list
should be printed at the same time the larger deck is read.
Explain why it is better to read the smaller deck first. What is
the advantage of printing the list while the second deck is being
read, rather than waiting till both decks are read?

2. Do exercise 1 assuming that the large deck is alphabetized,
but the small deck is not.

3. Write a program that maintains a "lost and found" service.
First the program reads cards giving found objects and the
finders' names and phone numbers. For example, this card

SIAMESE CAT MISS MABEL DAVIS 714-3261

means Miss Mabel Davis, having phone number 714-3261, found a
Siamese cat. These cards are to be read and ordered
alphabetically and then a similar set of cards for losers of
objects is to be processed. If a lost object matches a found
object, then the program should print the name of the object as
well as the finder, the loser and their telephone numbers.
Assume the loser cards are not alphabetized. Process each loser
card as it is read, using a binary search.

At

4 •
(1 f i .

' ‘ 1 ^ - 'V* ,
■ ,5', '■;. ■1='^

1
. t

* 1
« «

* t ;

» ..

'■* • »

♦ ' V.

• *jt
* 1>*f

-!\

ihT 4,1 ' *" • r

i. »fc- *4 - d4S*>ai%t
• i ^ »*i;q ftf •{ IaS#!

t'-i *lT^07(^Qr «4! faliaic
tl-.. . . » 1?* ^tG»P%v »« ^ • •« "5 I »

ft |l|^ n;y,9 4P«^

•«•»: I. j

- » ♦ T ''‘f
• ^ '. ai 4J*^a lilt *,*.. ji;. :

'JJiSVAif TVfll*
X

• * t ' • ■ i-

- ll«f*yX «t*m

:. .'^ T 1 A ; ■«

. -’L

1 * i , - - M

' «>-

#•'

* - .

” #4 • — ^

-
= • t * • p

. 1 ■ » T f r ^'. • ♦ ■:. • • ♦Jf ;i

- I- • . it '* * t

4

tar

«

» «

•■ •

• •f ^ ..'V ^ "'.**■“ ■

-r'* ^

• 1 ’ r -tt . «* .1. ■ V ' ■

''«' ^ ir3U> • »
1|

‘S f •-f ‘

^ jfSr. ^ i. 4
W - * • 1

**

1-,

» >

1
»

.»

*

i\ ..

#M|«li PlSf^

.-'i ' -J-. r^‘

A •■ -

4^ a;

»f
r*; ntsi9t^

P t €.3

Chapter 14
MAKING SURE THE
PROGRAM WORKS

Throughout this book, we have emphasized structured
programming techniques; these include step-by-step refinement,
programming without the GO TO statement, choosing good variable
names and so on. These techniques make it easier to write
correct programs. We have also given techniques for testing and
debugging programs. In this chapter we will collect and expand
upon these techniques for making sure a program works.

SOLVING THE RIGHT PROBLEM

The specifications for a program tell what the program must
do to solve a problem. Before starting to write a program, the
programmer needs the detailed specifications for the program.
Suppose the problem is to print pay checks for the employees of a
company; there is a card giving each employee's name and amount
of payment. The programmer needs to know the format of the data
on the cards as well as the format for the pay checks. These
formats are part of the specifications for the program to print
pay checks .

Sometimes the program specifications are not completely
agreed upon and written down. If an employee's card indicates an
amount of $0.00, this may mean that the employee is on leave and
is to receive no pay check. If the programmer does not know the
special significance of $0.00 - because the specifications are
not complete - he may write a program that prints hundreds of
worthless pay checks. All too often programs fail to handle
special situations such as $0.00 correctly. If the programmer is
in doubt about such a situation, he should check the
specifications and make sure they are complete.

193

194 Making Sure the Program Works

DEFENSIVE PROGRAMMING

Errors are sometimes made in the preparation o
program. Amounts may be mispunched on cards; more d
supplied than anticipated. The method of handling
may be given in the program specifications, or it may
the discretion of the programmer. Sometimes a pr
write his program so that it detects and reports bad
is called defensive programming. Some programs ar
accept absolutely any data; after reporting a bad dat
program ignores the item or attempts to give it
interpretation. If a program is written assuming no
bad data items may prevent the program from doing its
the programmer's responsibility to make his program
defensive to solve the problem at hand.

f data for a
ata may be
data errors
be left to

ogrammer can
data. This
e written to
a item, the
a reasonable
data errors,

job. It is
suf ficiently

ATTITUDE AND WORK HABITS

The quality of a computer program is determined largely by
the attitudes and work habits of the programmer. Some
programmers underestimate the programming task. They write
programs too quickly, they do not test their programs
sufficiently, and they are too willing to believe that their
programs are correct.

Most programs, when first written, contain some errors. This
is not surprising when you consider the vast number of possible
programming errors and the fallibility of every programmer. The
programmer should take the attitude that a program is not correct
until it is shown to be correct.

The program
the programmer

This method
a lot of time.

One good method of preparing computer programs is to write
them using a soft lead pencil. This allows easy corrections and
improvements by erasing and replacing lines. If a major change
is requ-ired, an entire page should be recopied,
should be submitted to the computer only when
feels confident that no more changes are required,
of program preparation can save the programmer
The savings come because it is easy to change a program when it
is still on paper and fresh in the programmer's mind. Each later
change requires the programmer to relearn the program before he
can confidently make modifications. A few minutes of desk¬
checking a program can save hours of debugging time. The
programmer who tries to "do it right the first time" comes out
ahead, saving his own time and writing programs with fewer
errors .

PROVING PROGRAM CORRECTNESS

The most effective way to make sure a program works correctly
is to study the program thoroughly. It should be read again and

Use o f Com men ts and I den ti fiers 195

again
right.

until the programmer is thoroughly convinced that it is

It helps if a second programmer reads and approves the
program. Ideally, the second programmer should read the program
after its author feels that it is correct, but before it is
submitted to the computer. The second reader provides a new
point of view and may be able to find typical errors such as
incorrect loop initialization.

This process of studying programs to make sure they are
correct can be
programs are
proving that a
a theorem in
correct by a

called "proving program correctness". Sometimes
proven correct using a mathematical approach;
program is correct is then similar to proving that
geometry is true. More often, programs are proven
non-mathematical, common-sense approach. The

program is considered to have errors until proven correct.

PROGRAMMING STYLE

A program should be easy to read and understand; otherwise
the job of studying it to verify its correctness will be
hopeless. The programmer should strive for a good programming
style, remembering that other readers will be in a hurry and will
be critical of sloppiness or unnecessary confusion in the
program. It commonly happens that as a programmer makes a
program clearer and easier to understand, he discovers ways to
improve or correct the program.

It takes work to write programs that
as it takes work to write clear English,
care and practice. One way of maki
understandable is to give them a simple
reader can easily learn the relationship
have previously presented step-by-step
programming as techniques for designi
aiding in the writing of programs, these
programs easier to read.

are easy to read - just
Good writing requires

ng programs readable and
organization - so the
among program parts. We
refinement and modular
ng programs. As well as

techniques help make

USE OF COMMENTS AND IDENTIFIERS

One of the rules of good programming style is this: comments
and identifiers should be chosen to help make a program
understandable. Comments should record the programmer's
intentions for the parts of the program. It is a good idea to
write comments as the program is being written.

Better programs require fewer comments, because the program
written in Pascal closely reflects the intentions of the
programmer. Programs become more difficult to read if they are
cluttered with obvious comments such as

196 Making Sure the Program Works

(* INCREASE N BY 1 *)
N: -N+ 1 ?

Comments are usually needed to record:

- Overall purpose
to solve. As well,
program's author and

- Purpose of each
overall program.

f a prog ram. What pr
comments may be u
its date of writi ng.

module. Similar to

oblem the program is
sed to record the

the comments for an

- Purpose of a collection of statements. Such a comment
might give the purpose of a loop.

- Assumptions and restrictions. At certain points in a
program, assumptions and restrictions may apply to variables
and the data. For example, one program part may assume that
another program part has set NUMBER_OF_ACCOUNTS to a positive
number less than 20 to indicate the number of customer
accounts .

- Obscure or unusual statements.
should be avoided. If they are
explained.

As a rule, such statements
required they should be

Well-chosen identifiers
identifier should record the
example, an array used to
ACCOUNTNUMBER and not ARRAY,
should be named READACCOUNTS

make a program easier to read. Each
function of the named object. For
save account numbers should be named

A procedure used to read accounts
and not PI or MARGARET.

If a variable has a very simple purpose, such as indexing
through an array, a one-letter name such as I, J or N may be
appropriate. This is because these letters are commonly used for
indexing in mathematics. But if the index variable has some
additional meaning, such as counting input data cards, a longer
name may help the reader.

Avoid abbreviations, such as TBNTR for table entry. Avoid
acronyms, such as SAX for sales tax. Unless abbreviations or
acronyms are well known to the reader before seeing the program,
they impose an extra memorization task that interferes with
understanding the program.

Avoid meaningless
A single-letter identifi
a simply-used variable
it stands for diameter,
of an identifier, as
explains the purpose of

identifiers such as A, B, C, D and TEMPI,
er such as D is sometimes appropriate for
when the name D is relevant, for example.
Adding a digit such as 1 or 2 to the end
in TEMPI, can be confusing unless it

the named object.

Testing 197

TESTING

After the program has been written and studied to verify its
correctness, it should be tested. The purpose of testing is to
run the program to demonstrate that it is working properly.

The tests must be chosen with care because only a limited
number of them can be run. Consider a program designed to sort
any list of 100 names into alphabetic order. Certainly we could
not test it exhaustively by trying every possible list of 100
names. We would be testing for years! Rather than exhaustive
testing we need to design tests which try every type of situation
the program is to handle.

Well-designed tests should point out any errors in the
program. Ultimately, testing demonstrates errors better than it
demonstrates program correctness.

When testing reveals an error, that is, a bug, in the
program, the programmer is faced with a debugging task. We shall
present debugging techniques later. Right now, we will give
techniques for testing.

The programmer will need to study the program in order to
design good tests. The tests should make each statement execute
at least once - but this is not enough. Suppose the statement

AVERAGE:-TOTAL/COUNT;

is tested and computes the desired average. This does not
demonstrate that all is well; it may be that in some situations
COUNT can become zero. If this statement is executed with COUNT
set to zero, the statement does not make sense. So, not only
should every statement be executed, but it should be executed for
the type of situation it is expected to handle. Care should be
taken to:

- Test end conditions. See that each loop is executed
correctly the first time and last time through. See that
indexes to arrays reach their smallest and largest possible
values. Pay particular attention to indexes and counters
which may take on the value zero.

- Test specia1 conditions. See that data which rarely occurs
is handled properly. If the program prints error messages,
see that each situation requiring such a message is tested.

Designing tests to exercise all end conditions and special
conditions is not easy - but it is worthwhile in terms of program
reliability.

The programmer should be able to tell from test results if
the program is executing correctly. Sometimes this is easy
because the program prints intermediate results as it progresses.
Sometimes the programmer will need to add special printing

198 Making Sure the Program Works

statements so he can verify that the program is running
correctly. These statements can:

Print data as it is read. If there is not too much data, it
may be good to have the program print the data as it is read.

Print messages to record the statements being executed. For
example, a message might say READING ACCOUNTS PROCEDURE

ENTERED.

Print values of variables. This allows the programmer to
verify by hand that the values are correct. The best time to
print variables is when modules start and when they finish,
so the programmer can verify that variables were modified

correctly.

Print warnings of violated assumptions. Suppose a procedure
is used to set WHERE to the index of the smallest number in a
list of 12 numbers. The assumption that WHERE receives a
value from 1 to 12 can be tested by

IF (WHERE<1) OR (WHERE>12)THEN
WRITELN(' ERROR:WHERE-',WHERE);

Care must be taken to design appropriate printing statements for
testing. Too much printing will not be read by the programmer;
too little printing will not give the programmer sufficient
information about the execution of the program.

Ideally, tests should be designed before the program is
submitted to the computer. With the program still fresh in his
mind, the programmer can more easily invent tests that try out
every statement. Sometimes a programmer discovers that parts of
a program are difficult to test; a slight change in the program
may overcome this difficulty. It is best to make these changes
when the program is still on paper, before time has been invested
in punching or mark-sensing the program and submitting it to the
computer. Designing tests requires the programmer to read his
program with a new point of view. It sometimes happens that this
point of view uncovers errors in the program. The best time to
fix these errors is when the program is still on paper.

As programs become larger, it becomes increasingly difficult
to test them thoroughly. Large programs can be tested by first
testing the modules individually. Then the modules are combined
into larger modules and these are tested and so on. The process
is called bottom-up testing. This method of testing uses
specially-written test programs that call the modules with
various values of parameters, shared variables and input data.

Whenever a program is modified, it should be retested. All
the changed parts should be tested. In addition, it is a good
idea to test the entire module containing changes, or even the
entire program. The reason is that modifications often require a
precise understanding of the surrounding program, and this

Debugging 199

understanding is sometimes not attained. Very commonly, program
modifications introduce errors.

DEBUGGING

it fails to solve the
program misbehaves we
- correcting the error,
a disease and we must
is far removed from the

A program has bugs (errors) when
problem it is supposed to solve. When a
are faced with the problem of debugging
The program's misbehavior is a symptom of
find a cure. Sometimes the symptom
source of the problem; erroneous statements in one part of a
program may set variables' values incorrectly and trigger a
series of unpredicted actions by the program. When the symptoms
appear via incorrect program output, the program may be executing
in a different module. The programmer is left with a few clues:
the incorrect output. He has to solve the mystery and cure the
disease. Solving these debugging mysteries can take more time
than writing the program.

When a program contains a bug, this means that the programmer
made at least one mistake. We can categorize programmer errors
as follows:

Errors in making the program machine-readable. If the
program is prepared on punch cards, PROCEDURE might be mis-
punched as PROCDEURE. These are keypunching errors.

Errors in using the programming language. The programmer did
not understand a language construct. For example, to compare
two character arrays they must be of the same length.

Errors in writing program parts. Although a particular
program part was properly designed, it was not correctly
written in Pascal, For example, a loop designed to read in
account cards might always execute zero times because of
writing the loop's terminating condition incorrectly.

Errors in program design. The program parts and their
interactions might be improperly designed. The program
designer might forget to provide for the initialization of
variables used by some modules. He might overlook the fact
that one module, say, PRINTACCOUNTS, should be called only
after calling another module, say, READACCOUNTS.

SolVing the wrong problem. The programmer did not understand
the nature of the problem to be solved. He may have
misunderstood the program specifications. Perhaps the
specifications were not correct or complete.

This list of possible errors has proceeded from the least
serious to the most disastrous. The first type of errors, such
as keypunching errors, can be corrected easily once detected.
The last type of error, misunderstanding the purpose of the

200 Making Sure the Program Works

program, may require scrapping the entire program and starting

over again.

Some programmers are overly optimistic and immediately
conclude that any bugs in their programs are not very serious.
Such a programmer is quick to make little changes in his program
to try to make the symptoms of the problem disappear. The wise
programmer knows that program misbehavior is an indication of
sloppiness and that sloppiness leads easily to disastrous errors.
He takes program misbehavior as a sign that the program is sick -
he gives it a checkup by studying it.

The overly optimistic programmer is forev
found the last bug." When the wise programmer
looks for five more.

Many of the least serious errors, su
keywords, are automatically pointed out by
because the error results in an illegal Pasc
errors are usually easy to fix. Some errors
treacherous; they seem to defy attempts to corr
some advice - some of it repeated from earlier
- to help you track down treacherous bugs.

er saying, "I just
finds a bug, he

ch as misspelled
error messages,

al program. These
are particularly

ect them. Here is
parts of this book

Read all error messages. In their hurry
program's output, some programmers fail to
messages. These messages may pinpoint a bug.

to read thei
notice er ro

Beware of automatic error repair. Compilers try to
easier to get programs working by "repairing" error
example, the programmer might carelessly write X:
compiler might repair this to X:“2; such repairs c
time by allowing more of the program to be comp
executed on one run. However, these repairs should
taken as intelligent advice; remember, the compile
idea what problem you are trying to solve.

make it
s. For
-2Y; the
an save
iled and
not be

r has no

The first error messages may help more than later ones. This
is because the first messages are closer to the source of the
problem. Later messages may simply indicate that a previous
error is still causing trouble.

Beware
consis
like
charac
tenden
actual

of confusion between ^
tently read Xz-X+I; to mean
this can be found by readi
ter - as a computer does
cy to read what we want
ly there makes debugging dif

and _1_. Some people can
increase X by one. Errors
ng the program character by

1 In general, the human
to be there, rather what is
ficult.

Beware of misspellings. Some words are easily misspelled. A
person who is concentrating on understanding a program may
overlook RECEIPT occasionally spelled as RECIEPT.

Beware of language peculiarities.
minimize language peculiarities, but
for the naive programmer. Among the

Pascal
it still
worst of

was designed to
has some traps
these are:

Chapter 14 Summary 201

(a) Putting a semicolon after THEN. The following lines
of Pascal will check to see if X is greater than 2:

IF X > 2 THEN;
Y: -X;

Whether this is true or not, Y will be set to X. The
semicolon after THEN acts as a null statement, which is
executed when X is greater than 2.

(b) Omitting VAR for parameters returning results. The
following procedure is intended to change the sign of X
in the statement NEGATE(X).

PROCEDURE NEGATE(J: REAL);
BEGIN

J : --J
END

Unfortunately, the programmer forgot to put VAR before
the declaration of J, so J is a value parameter rather
than a variable parameter. As a result, J is given a
copy of X's value and this copy is negated without
affecting X. The procedure should be corrected by
inserting VAR before J;REAL.

If everything else fails in the debugging effort, the
programmer is forced to rerun his program to gain more
information about the errors. The programmer may add statements
to print variables or to trace the program's execution. These
statements are designed using the same techniques used in testing
to show programs work properly. If the original tests had been
carefully enough designed, there is a good chance they would have
pinpointed the error and eliminated later time-consuming
debugging.

CHAPTER 14 SUMMARY

In this chapter we have listed techniques for making sure a
program works. There are a vast number of ways a program can be
wrong, so the programmer should learn to be careful at all the
stages of program preparation. When a programmer is too hasty to
submit his program to the computer, this results in persistent
bugs and excessive time spent in debugging. The following
important techniques and terminology were presented in this
chapter.

Program
This
and
per f
the

specifications - explanation of
should include the forms of the
the type of calculation or

ormed. Essentially, program spec
computer is to be used to solve a

what a program is to do.
input and output data
data manipulation to be
ifications explain how
particular problem.

202 Making Sure the Program Works

Progranuning habits - the way
Ideally, he should take
completing his program in
before submitting it to the

a programmer goes about his work,
the slow but sure approach,
pencil and thoroughly studying it
computer.

verify that it Program correctness - studying a program to
satisfies its specifications.

Programming style - if the style is good, then the
easily read and understood.

program can be

Use of comments and identifiers - good programming style requires
that comments and identifiers be chosen to make a program
understandable. Comments should record the programmer's
intentions? identifiers should record the function or use of
the named object.

Testing - running a program to demonstrate that it meets its
specifications. Tests should be designed to try every type
of situation the program is to handle. Ultimately, testing
is better at demonstrating bugs than demonstrating program
correctness.

Debugging - correcting errors in a program. Debugging can be the
most difficult and time-consuming part of trying to make a
program work. These difficulties can be minimized by using
the techniques listed in this chapter.

CHAPTER 14 EXERCISES

1 . In
Modify
errors

this exercise you are to use defensive programming,
the program given in chapter 8 so that it will handle
in^the data gracefully. The program reads a list of names

and prints the list in reverse order.

2. Try to write a program that is completely correct before you
submit it to the computer. Have a friend help you by studying
your program for errors after you are convinced that it is free
of errors. Record the time you spend preparing the program and
record any programming errors you make. Your program should
perform one of the following tasks:

(a) The program should read a series of integers followed by
the dummy value 99999. Print the sum of the positive
integers and the number of negative integers.

(b) The program should read and print a list of
alphabetically ordered names. If a name is repeated in the
data, it should be printed only once.

Chapter 15
PS/7: FILES AND RECORDS

So far we have spoken about files of records and discussed
the process of searching for particular records. This process
was made more efficient by having the files sorted. We then
looked at ways of sorting files of records. All sorting methods
involve moving records around in the computer memory. In our
sorting examples, we did not really deal with the situation of
sorting records that consisted of more than the one field, namely
the key field of the ordering. In our examples, then, moving the
record meant only moving this one field. In most data processing
applications, records contain a number of fields, and it is
important to be able to write statements in a program to move all
the fields as a single unit. We will be introducing the idea of
a record structure which is a group of several fields designed to
make file processing simple to program.

When large quantities of data have to be processed, it is
impossible to store files of records completely within the main
memory of the computer. It is usual to keep large files in
secondary storage such as magnetic tape or magnetic disk storage.
We must then be able to read records from such a file and write
records into it. We will be looking at the statements in Pascal
that permit us to manipulate files in secondary storage.

RECORDS

A Pascal RECORD is a collection of several fields and is
particularly suitable for records in a file. As a simple
example, suppose that we want to describe each entry in the
telephone book as a record. We would identify the entire record
by the identifier CUSTOMER and the three fields as

203

204 PS/7: Files and Records

CUSTOMER.NAME
CUSTOMER.ADDRESS
CUSTOMER.PHONENUMBER

Here is a diagram showing the fields:

CUSTOMER

NAME ADDRESS PHONENUMBER

The field identifiers are a composite of their own identifiers,
NAME, ADDRESS, and PHONENUMBER and the whole record's identifier,
CUSTOMER. The composite is constructed by putting a dot, or
period, between the record name and the field name.

The record structure would be declared this way.

VAR CUSTOMER:
RECORD

NAME: PACKED ARRAY[1..20] OF CHAR;
ADDRESS: PACKED ARRAY[1..301 OF CHAR;
PHONENUMBER: PACKED ARRAY[1..81 OF CHAR

END;

This record structure consists of two levels o
first level we have the identifier of the
declared, namely CUSTOMER. The next level
declared. Each of these has its own type. So i
have each field with a different type. Here, a
of type PACKED ARRAY..OF CHAR, but each has a di

f naming. At the
record structure
has three fields

t is possible to
11 the fields are
fferent range.

A record structure is sometimes
record.

called the layout of a

MOVING RECORDS

One of the reasons for having record structures is tha
make it simple to program the movement of a whole record fr
place to another. When a move is to take place, the lo
that will receive the structure must be declared to have e
the same set of fields. If we want to have two or more dif
records with the same layout we can describe the layout as
as in

t they
om one
cation
xactly
f erent
a type

Arrays of Records 205

TYPE CUSTOMERTYPE-
RECORD

NAME: PACKED ARRAY[1..20] OF CHAR?
ADDRESS: PACKED ARRAY I 1..30] OF CHAR?
PHONENUMBER: PACKED ARRAY[1..8] OF CHAR

END ?
VAR CUSTOMER,WORKSPACE; CUSTOMERTYPE?

The record WORKSPACE will have
and PHONENUMBER. They will be
WORKSPACE.ADDRESS, and so on.
CUSTOMER and WORKSPACE have the

To move the record CUSTOMER
only write

WORKSPACE :- CUSTOMER?

This is equivalent to the group

all the same fields, NAME, ADDRESS
referred to as WORKSPACE,NAME,
We say that the record structures
same record type.

into the record WORKSPACE we need

of assignment statements

WORKSPACE.NAME:-CUSTOMER.NAME ?
WORKSPACE.ADDRESS:-CUSTOMER.ADDRESS ?
WORKSPACE.PHONENUMBER:-CUSTOMER.PHONENUMBER ?

An entire record can be assigned to another by a single
assignment statement only if one record has the same type as the
other.

ARRAYS OF RECORDS

Just as other types such an INTEGER may form arrays, records
may form arrays. Each member of the array of records has the
same type. For the telephone-book records, an array of 100 such
records could be declared by

TELEPHONEBOOK; ARRAY[1..100] OF CUSTOMERTYPE?

An array of records can be used for grouping records for sorting
purposes. A procedure for sorting a group of CUSTOMER records
that have been declared in the main procedure will be given. The
records are to be sorted on the key PHONENUMBER. The array of
records called CUSTOMER will be global to the procedure. The
only parameter that the procedure has is NUMBEROFRECORDS. A
WORKSPACE record is declared as a local variable with the type
CUSTOMERTYPE.

206 PS/7: Files and Records

PROCEDURE SORT(NUMBEROFRECORDS: INTEGER);
(★ SORT RECORDS BY PHONENUMBER ♦)
VAR WORKSPACE: CUSTOMERTYPE;

I,J: INTEGER;
BEGIN

FOR I:-1 TO NUMBEROFRECORDS-1 DO
FOR J;-1 TO NUMBEROFRECORDS-I DO

IF customer!J].PHONENUMBER > CUSTOMER[J+1].PHONENUMBER
THEN

BEGIN (* SWAP customer!J] AND CUSTOMER!J+1] *)
WORKSPACE:-CUSTOMER!J];
CUSTOMER!J]:-CUSTOMER!J+1];
CUSTOMER!J+11;-WORKSPACE

In this example we have an array that contains records. The
records in this example contain arrays: the arrays of characters
for names, addresses and phone numbers. In general a record can
contain any type, including other records.

INPUT AND OUTPUT OF RECORDS

The record is a convenient form for moving the groups of
fields around in the main memory of the computer. But we have
not yet said how such structures may be read into or written out
from the main memory. The input-output statements that we have
had so far, the READ and WRITE, can be used to read or print
individual fields of a record in exactly the same way as the
values of individual variables are read or printed. The next
section will show how READ and WRITE can transfer the record as a
unit when the program has explicit declarations for files. If
you input records from cards, each field is read independently.
Here is a program that reads a set of at most 25 customer
records, sorts them and prints them:

Inout and Output of Records 207

$JOB 'STEPHEN ALEXANDER'
(♦ READ, SORT BY NUMBER, AND PRINT CUSTOMER RECORDS *)
PROGRAM NUMBERS (INPUT,OUTPUT);

TYPE CUSTOMERTYPE-
RECORD

NAME: PACKED ARRAY[1 . .2 0] OF CHAR;
ADDRESS: PACKED ARRAY[1..30] OF CHAR;
PHONENUMBER: PACKED ARRAY[1..81 OF CHAR

END;
VAR WORKSPACE: CUSTOMERTYPE;

CUSTOMER: ARRAY[1..25) OF CUSTOMERTYPE;
I,J,NUMBEROFRECORDS: INTEGER;

(copy procedure SORT here)
BEGIN

READLN(NUMBEROFRECORDS);
(* READ RECORDS INTO ARRAY *)
FOR I:«1 TO NUMBEROFRECORDS DO

BEGIN
FOR J:-1 TO 20 DO

READ(WORKSPACE.NAME[J]);
FOR J:-1 TO 30 DO

READ(WORKSPACE.ADDRESS[J1);
FOR J:-1 TO 8 DO

READ(WORKSPACE.PHONENUMBERIJ1);
CUSTOMER[I]:-WORKSPACE;
READLN

END;
(♦ SORT RECORDS BY PHONENUMBER *)
SORT(NUMBEROFRECORDS);
(♦ PRINT SORTED ARRAY OF RECORDS *)
FOR I:-1 TO NUMBEROFRECORDS DO

WRITELN(CUSTOMER[I].PHONENUMBER,
' ' ,customer!I 1 .NAME,customer!I] .ADDRESS)

END.
$DATA

5
JOHNSTON,R.L.
KEAST,P.
LIPSON,J.D.
MATHON,R.A.
CRAWFORD,C.R.

53 JONSTON CRES.
77 KREDLE HAVEN DR.
15 WEEDWOOD ROAD
666 REGINA AVE.
39 TREATHERSON AVE.

491-6405
439-7216
787-8515
962-8885
922-7999

The output for this program will be

439-7216
491-6405
787-8515
922-7999
962-8885

KEAST,P.
JOHNSTON,R.L.
LIPSON,J.D.
CRAWFORD,C.R.
MATHON,R.A.

77 KREDLE HAVEN DR.
53 JONSTON CRES.
15 WEEDWOOD ROAD
39 TREATHERSON AVE.
666 REGINA AVE.

In this example we are referring to characters in the
fields of the record named WORKSPACE using the variable
WORKSPACE.NAME!J1, WORKSPACE.ADDRESS!J1,
WORKSPACE.PHONENUMBER!J]. In Pascal there is a way to

three
names

and
avoid

208 PS/7: Files and Records

repetition of the record name by using the WITH statement. It
has the form

In
of

WITH record name DO
BEGIN

statements referencing field name
END

our program we could have used this set
what we had

WITH WORKSPACE DO
BEGIN

FOR J;-1 TO 20 DO
READ(NAME[J1);

FOR J:-1 TO 30 DO;
READ(ADDRESS[J]);

FOR J:-1 TO 8 DO
READ(PHONENUMBER[J])

END;

only

of statements instead

FILES IN SECONDARY MEMORY

In our discussion of files so far, we have had the files
stored in the main memory. In most real file applications, the
files are too large to be contained in main memory. The part of
the file being processed must be brought into main memory, but
the complete file is stored in secondary memory. The secondary
memory may be magnetic tape or magnetic disk.

A file in
the same type.
One item at
structure in ma
the dataset,
in the sequence
can be read
memory or writt
memory. This
not possible at
the file; the
available.

secondary sto
The collect!

a time may
in memory, or
The item that

of records i
sequentially
en sequential
kind of fil
any moment t
next item

rage is a collection of values all of
on is sometimes called a dataset.

be transferred from the dataset to a
from a structure in main memory to
is transferred must be the next item

n the dataset. We say that the file
from the secondary memory to the main
ly from the main memory to secondary
e is called a sequential file. It is
o get access to an arbitrary item in
in sequence is the only one that is

Since files in secondary storage are to be accessed
sequentially, there must be a statement in the program that will
position the file reader at the first item of the dataset.
Before a file in secondary storage can be read, we must have a
statement of the form

RESET(file name);

Files in Secondary Memory 209

The file name is that of the whole dataset or file. It may, for
example, be named OLDFILE. This identifier is declared at the
beginning of the procedure by

VAR OLDFILE: FILE OF CUSTOMERTYPE;

In general, a file may be declared as a FILE OF any type, such as
FILE OF INTEGER or FILE OF PACKED ARRAY[1..10] OF CHAR.

To read the next item from the file in secondary storage, we
write a statement of the form

READ (file identifier,variable);

We can read records from OLDFILE into variables such as CUSTOMER
whose type is CUSTOMERTYPE using this statement.

READ (OLDFILE,CUSTOMER);

If a file is to be written, it must first be prepared for
writing using the statement

REWRlTE(file identifier);

To write a record into such a file, we use a statement of this
form

WRITE (file identifier,expression);

As with input files, an output file must be declared as a FILE
and can receive only values (expressions) of the type given
following FILE OF.

Following RESET the file can be read but not written.
Following REWRITE the file can be written but not read. Once a
file has been written, the program can RESET the file and then
read it.

The names of files used by a program must appear in the
program heading statement. In all programs we have shown so far
the input came from the card reader (or keyboard input device)
and the output went to the printer. These "files" have the
standard names INPUT and OUTPUT. That is why we always preface
our programs with the line

PROGRAM identifier(INPUT,OUTPUT);

If in addition to these two files we intend to use files named
OLDFILE and NEWFILE our program heading would be

PROGRAM identifier(INPUT,OUTPUT,OLDFILE,NEWFILE);

210 PS/7: Files and Records

If a file is local, meaning it is created by
saved afterwards, then its name does not need
program heading.

the program and not
to appear in the

FILE MAINTENANCE

As an example of reading and writing
simple file-maintenance operation. We wi
exists a file of CUSTOMER records called
update this file by adding new customers,
the new customers is punched on cards. E
a transaction that must be posted in the f
to-date
example

customer
of file

file, which we will ca
maintenance. The fil

alphabetically by CUSTOMER.NAME and the tr
alphabetically. This program will be very
sort program of Chapter 13, except that
files being merged are not in an array.

files we will program a
11 assume that there
OLDFILE, and we want to

The information about
ach card corresponds to
ile to produce an up-
11 NEWFILE. This is an
e OLDFILE is ordered
ansactions are arranged
similar to the merge-
the records of the two

File Maintenance 211

$JOB 'HARRIET LOGAN'

PROGRAM UPDATE (INPUT,OUTPUT,OLDFILE,NEWFILE);

(* ADD NEW CUSTOMERS TO CUSTOMER FILE *)

CONST DUMMY-'ZZZZZZZZZZZZZZZZZZZZ';

TYPE CUSTOMERTYPE-

RECORD

NAME: PACKED ARRAY[1..201 OF CHAR?

ADDRESS: PACKED ARRAY[1..30] OF CHAR;

PHONENUMBER: PACKED ARRAY[1..81 OF CHAR

END;

VAR OLDFILE,NEWFILE: FILE OF CUSTOMERTYPE;

CUSTOMER,TRANSACTION: CUSTOMERTYPE;

J: INTEGER;

BEGIN

REWRITE(NEWFILE);

RESET(OLDFILE);

(♦ READ FIRST CUSTOMER RECORD FROM FILE *)

READ(OLDFILE,CUSTOMER);

(* READ FIRST TRANSACTION FROM CARD *)

WITH TRANSACTION DO

BEGIN

FOR J:»1 TO 20 DO

READ(NAME[J]);

FOR J:-1 TO 30 DO

READ(ADDRESS[J]);

FOR J;-1 TO 8 DO

READ(PHONENUMBER[J1)

END ;

READLN;

(* POST TRANSACTIONS TO CUSTOMER FILE *)

WHILE (TRANSACTION. NAMEODUMMY) OR (CUSTOMER . NAMEODUMMY) DO

IF CUSTOMER.NAME>TRANSACTION.NAME THEN

BEGIN

WRITE(NEWFILE,TRANSACTION);

WITH TRANSACTION DO

BEGIN

FOR J:-1 TO 20 DO

READ(NAME[J1);

FOR J:-1 TO 30 DO

READ(ADDRESS[J1);

FOR J:-1 TO 8 DO

READ(PHONENUMBER[J])

END;

READLN

END

ELSE

BEGIN

WRITE(NEWFILE,CUSTOMER);

READ(OLDFILE,CUSTOMER)

END;

(* ADD DUMMY RECORD TO END OF FILE *)

WRITE(NEWFILE,CUSTOMER)

END.

$DATA

(transactions one to a card)

ZZZZZZZZZZZZZZZZZZZZ NULL NULL

212 PS/7: Fites and Records

The DUMMY value of ZZ...Z alphabetically follows any legal names
in the file. This value is used because in the merging loop
comparisons with DUMMY will force all legal names to be merged
before the DUMMY value.

We can use the function EOF(OLDFILE) to determine when no
more records can be read. The WHILE...DO test can be replaced by
this:

WHILE (NOT EOF) AND (NOT EOF(OLDFILE)) DO

Notice that when EOF has no parameter it applies to the standard
input file.

PASCAL TEXT FILES

The two standard files INPUT and OUTPUT are implicitly
declared as j

VAR INPUT,OUTPUT: FILE OF CHAR;

RESET(INPUT) and REWRITE(OUTPUT) are implicitly
program begins execution. The program should
perform RESET or REWRITE for INPUT or OUTPUT.

performed as the
not explicitly

A file
file, and can
TEXT. Text
READ, READLN,
the file's
values can be
written, and

which is declared as FILE OF CHAR
equivalently be declared using the
files, such as INPUT and OUTPUT are
WRITE and WRITELN can transfer

type which

IS called a
predeclared
special in

values other
IS CHAR. In particular, INTEGER and

read and INTEGER, REAL and string values can
formatting can be specified. if f is declared a

text
type
that
than
REAL

be
s

VAR F: TEXT

then WRITE(F,'X IS',12:3) is a legal
parameter to WRITE or WRITELN is a TEXT
parameter is omitted, the OUTPUT file
and READLN have as their first parameter
which is taken to be INPUT if omitted
INPUT and OUTPUT must have explicit RESET

statement. The first
file variable; if the
is used. Similarly READ
a TEXT file variable.

Text files other then
and REWRITE operations.

CHAPTER 15 SUMMARY

for
The

In this chapter we introduced programming 1
manipulating records and using files in
following important terms were discussed in

anguage constructs
secondary memory,
this chapter:

Record - a collection of fields of
a record might be composed of
field and a telephone number f

information.
a name field,
ield .

For example,
an address

Chapter 15 Summary 213

RECORD type - the Pascal construct for records. For example,
this declaration establishes a record type called
DIRECTORYENTRY With name, address and telephone-number
fields.

TYPE DIRECTORYENTRY-
RECORD

NAME; PACKED ARRAY[1..20] OF CHAR;
ADDRESS: PACKED ARRAY[1..301 OF CHAR;
PHONENUMBER; PACKED ARRAY[1..8] OF CHAR

END;
VAR CLIENT: DIRECTORYENTRY;

CLIENT is a variable whose type is a record.

Array of records - to declare an array of records of the
record type DIRECTORYENTRY we use the declaration:

VAR PHONEBOOK: ARRAY[1..501 OF DIRECTORYENTRY;

This creates an array of 50 records where each record
has the same fields as CLIENT. PHONEBOOK[51.NAME refers
to the name field of the fifth record in the array.

Assigning records - if two record variables are of the same
type as each other, one can be assigned to the other by
a single assignment statement. For example, we can
write

PHONEBOOK[51:-CLIENT;

to assign the three fields of CLIENT to the
corresponding three fields of PHONEBOOK[5].

Dataset - a file of information residing on secondary
storage, typically on a disk or tape.

Sequential files - files that are always accessed (read or
written) in order, from first item to second item to
third item and so on.

RESET a file - means to prepare a file for reading by a
program. A file in Pascal can be opened for input
using:

RESET(file name);

The file is positioned to its first item (if any). The
file can be read but not written.

REWRITE a file - means to prepare a file for writing by a
program. A file in Pascal can be opened for output
using;

REWRITE(file name);

214 PS/7: Fites and Records

The file is positioned to write the first item and
previous contents of the file are lost. The file can be
written but not read.

READ - access the next (or first) value in a file
statement has the form

The READ

READ (file name, variable);

WRITE - add a record to a file
form:

The WRITE statement has the

WRITE (file name, expression);

File declaration - a file that is used in a program can be
declared using the form

VAR file name: FILE OF type;

Program heading - programs that use permanent files in
secondary storage must have the file names listed,
separated by commas, in the program heading. For
example, if files named OLDFILE and NEWFILE are to be
used the heading would be

PROGRAM name(INPUT,OUTPUT,OLDFILE,NEWFILE);

File maintenance - means to keep a file up to date. This
involves reading transactions and adding, deleting or
modifying file records.

WITH statement - when a series of references is made to the
fields of a single record, rather than referencing each
field by its full name, namely

record name . field name

We can use a WITH statement whose form is

WITH record name DO
BEGIN

statements using field name only
END

This cuts down on the length of names and simplifies the
program.

TEXT file - a file variable declared as TEXT or FILE OF CHAR
can use the READ, READLN, WRITE and WRITELN operations
usually associated with the standard input and output
files.

Chapter 15 Exercises 215

CHAPTER 15 EXERCISES

The exercises for this chapter are based on a data processing
system to be used by Apex Plumbing Supplies. For each of its
customers, Apex has a card with the fields:

Name (card column 1-20)
Address (card column 21-40)
Balance (card column 41-50)
Credit limit (card column 51-60)

These records are presently on punch cards. However, they are to
be transferred to a disk file. A sample of the data is shown:

ABBOT PLUMBING 94 N.ELM 3116 50000
DURABLE FIXIT 247 FOREST HILL 0 10000
ERICO PLUMBING 54 GORMLEY 9614 5000

The exercises for this chapter require you to write programs for
various parts of the data processing system for Apex.

1. Write a program to read cards and create a master file for
Apex Plumbing Supplies.

2. Write a program to read an old version of the master file for
Apex, sort the file, creating a new master file that is
guaranteed to be in alphabetic order according to the name field.

3. Write a program that takes an existing master file for Apex
and creates a new master file by deleting or adding new customer
records. For example, the transaction data cards for your
program might be

DAVIS REPAIR 4361 MAIN 2511 10000
ERICO PLUMBING DELETE 0 0

You can assume that these cards are in alphabetic order. If the
address field on the account card specifies DELETE, the account
is to be deleted from the file.

4. Write a program that reads the Apex master file and prints
the list of customers whose balances exceed their credit limits.

5. Write a program that reads the Apex master file and prints a
bill for each customer whose balance is greater than zero. For
example, for the file record

DAVIS REPAIR 4361 MAIN 2511 10000

your program should print

216 PS/7: Fites and Records

TO: DAVIS REPAIR
4361 MAIN

DEAR SIR OR MADAM:
PLEASE REMIT $25.11 FOR PLUMBING SUPPLIES.

THANK YOU,

JOHN APEX, PRES.

APEX PLUMBING SUPPLIES
416 COLLEGE ST.

6. Write a program that updates the master file using billing
and payment transactions. A billing transaction is a card of the

form

name (columns 1-20)
amount (columns 41-50)

(columns 51-80 are blank)

For each billing transaction, the balance of the account is to be
increased by the specified amount. A payment transaction is a
card of the form

name (columns 1-20)
amount (columns 41-50)
CR (columns 51-52)

For each payment transaction, the balance of the account is to be
decreased by the specified amount. The billing and payment cards
are not in order, so they should be sorted before creating the
new master file.

Chapter 16

DATA STRUCTURES

In the last chapter we introduced the idea of records. By
using these data structures we could move a group of items of
data around in the computer as a unit. Also, we can have arrays
of records.

All of the classifications, variables, arrays of single
variables, records, and arrays of records are examples of what we
generally call data structures. Just as we systematize our
programs by attempting to write well-structured programs, we
systematize the way in which data is stored. We structure data.

In this chapter we will describe other structural forms for
data and give examples of how these structures are useful to us.
We will describe data structures called linked lists and tree
structures. There are many kinds of lists, for example stacks,
3.ueues, doubly-1 inked lists, and so on. Tree structures can be
limited to binary trees, or may be more general.

Pascal contains a
implement linked lists
these data structures
will do this first and

feature called pointers that can be used to
but it is possible to implement all of
without pointers using arrays instead. We
then show how Pascal pointers can be used.

LINKED LISTS

Suppose
called DATA.
For simplici
of a single f
if the order

that we had a file of records stored in an array
The records are arranged in sequence on some key.

ty, we will consider that each record consists only
ield which is the key to the ordering. We know that
is ascending and no two keys are identical, then

DATA[1+1] > DATA[I]

277

218 Data Struetures

The difficulty with this kind of data structure for a file comes
when a new item is to be added to the file; it must be inserted
between two items. This means we would have to move all the
items with a key higher than the one to be inserted, one location
on in the array. For example, you can see what happens when we

insert the word DOG in this list:

before after inserting DOG

DATA[1] CAT CAT

DATA[2] DUCK DOG

data!31 FOX DUCK

DATA[4] GOOSE FOX

DATA[51 PIG GOOSE

data!6] - PIG

Any list that is changing with time will have additions and

deletions made to it. A deletion will create a hole unless

entries are moved to fill the hole.

- When the list changes with time we can use the data structure
called the linked list. In the linked list each item has two
components, the data component and the linking component or link.
(We will be using Pascal pointers to implement links later.) We
associate with each entry in the DATA array an entry in a second
array of integers called LINK. The number stored in LINK[l] is
the index of the next entry in the sequence of the DATA array.
This means that the actual or physical sequence in the DATA a?:ray
is different from the logical sequence in the list. Here is an
example showing our previous list as a linked list. The start of
the list is stored in the INTEGER variable FIRST.

FIRST 3

DATA[1] PIG LINK[11 o 0

DATA[21 FOX LINK[2] V “4

DATA[31 CAT LINK[3] ^ -5

PATA[4] GOOSE LINK[4] 1

DATAl5] DUCK LINKi 5] -2

DATA[6] - link!61 -

Here is a diagram of this:

You can follow the list by beginning with the value of FIRST,
which is 3. The first entry will be in DATA[3l; it is CAT. By
looking then at LINK[3] you find a 5 which is the index of the
next list item, DATA[5], which is DUCK. You follow the list down
until you reach a LINK whose value is 0; this is the signal that
you have reached the end of the list. Other signals can be used,
such as having a negative number.

Memory Management With Lists 219

INSERTING INTO A LINKED LIST

To see the merit of a linked list we must see how to insert
new entries. We will add DOG in its proper list position. We
will do this first by hand; afterwards we will have to program it
for the computer. We will place DOG in DATAI6] since it is an
available or free location. We must now change the values of
certain of the links so that the new entry will be inserted. We
must put a value into LINK[6] and change the value of the LINK of
the entry before DOG, which is CAT, to point to DATA[6]. This
means that LINKl3] must be changed to 6 and LINK[6] must be set
to 5 so that the entry after DOG is DUCK, which is DATA[5].

The linked list then becomes

FIRST 3

DATAI 1] PIG link!1] 0
DATA[2] FOX LINK[2] 4
DATAI 3] CAT link!3] 6
DATA[4] GOOSE LINK[4] 1
DATA[5] DUCK LINK[5] 2
DATA[6] DOG LINK[6] 5

Here is a diagram:

To add DOG, one LINK must be changed and one set. No
movement of the existing items in DATA is necessary. This is
surely an improvement over moving half the list, on the average,
to insert a new entry. The cost of this improved efficiency of
operation comes in having to reserve memory space for the LINK
array. This array gives the structure of the list and is stored
explicitly for a linked list. In an array, the sequence or
structure is implicit; each entry follows its neighbor. We will
see several other kinds of structures that require us to store
the structure information explicitly.

MEMORY MANAGEMENT WITH LISTS

With linked lists, some of the memory is used for structure
information and some for data. For any list, as the list grows,
we use more memory; as it shrinks, we use less. This means we
must reserve enough memory to hold the longest list that we ever
expect to have. But we should not waste memory. As we stop
using certain elements of the array by deleting entries, we must
keep track of where they are, so when additions occur we can

220 Data Structures

reus© these same elements. To keep track of the available array
elements w© keep them together in a second linked list. The list
of available array elements does not have any useful information
in the DATA part, but it is structured as a list using values in
the LINK part. W© must keep track of the beginning of this list
so w© keep the index of its beginning in a INTEGER variable

AVAILABLE.

Her© is an array of 10 elements that stores our previous data
items in a different set of locations and has the available space

linked up:

FIRST 10 AVAILABLE 7

DATA[1] GOOSE LINK[1] 9

DATA[21 FOX LINK[2] 1

DATA[3I - LINK[3] 6

DATA[4] DUCK LINK[4] 2

data!5] - LINK[51 0

DATA[6] - LINK[6] 5

DATA[7] - LINK[7] 3

DATA[8] DOG LINK[81 4

DATA[91 PIG LINK[9] 0

DATA[101 CAT LINK[10] 8

In these arrays there are two linked lists, on© containing the

actual data, the other containing elements available for use.

Each list has a pointer to its start; each has a last element

with a link of 0. Every element of the array is in on© list or

the other.

The next problem is to writ© a procedure for adding a new
item to the list. W© will develop the algorithm for this using

step-by-step refinement.

PROCEDURE FOR INSERTING INTO A LINKED LIST

The first step
presume the value to

is to construct a solution tree. W© will
be added is in the variable NEWDATA:

Insert NEWDATA
into linked list

Obtain storage
element with
index NEW from
available list

Place NEWDATA Insert storage
in storage element element with
NEW index NEW into

the linked list

The expansion of the left branch of the solution tree requires us
to find the index NEW of the first element of the list of

Procedure for Inserting Into a Linked List 221

available elements and remove the element from the list. Here is
the program segment that does this:

NEW:“AVAILABLE;
AVAILABLE:-link!AVAILABLE];

The middle branch is also simple. It is

DATA[NEW 1 :-NEWDATA;

We must expand the right branch still further:

Insert storage
element with
index NEW into
the linked list

IF NEWDATA goes first in list THEN
place element at beginning of list

ELSE find place to insert NEWDATA
and adjust links to make insertion

NEWDATA will go first in the list if either the list is empty or
NEWDATA is less than the first element of the list. So we can
write, "IF NEWDATA goes first in list," in this way:

IF (FIRST-NULL) OR (NEWDATA<DATA[FIRST]) THEN

We have assumed that NULL is a named constant whose value is
zero. We can write, "Place element at beginning of list," in
this way:

BEGIN
LINKiNEW]:“FIRST;
FIRST:“NEW

END

For the part of the program after the ELSE we need to examine the
entries in the list and compare them with NEWDATA. The index of
the element being compared we will call NEXT. The index of the
previously compared element we will call PREVIOUS. We need to
keep track of this previous element, because if

NEWDATA < DATA[NEXT]

we must insert our element with index NEW between PREVIOUS
NEXT. Here is the program segment for this:

and

222 Data Structures

BEGIN
(* FIND PLACE TO INSERT NEWDATA *)
PREVIOUS;-FIRST;
NEXT:-LINK[FIRST];
WHILE (NEXTONULL) AND (NEWDATA>-DATA I NEXT]) DO

BEGIN
PREVIOUS:-NEXT;
NEXT:-LINK[NEXT]

END;
(★ ADJUST LINKS TO MAKE INSERTION *)
LINK[PREVIOUS]:-NEW;
LINKlNEW];-NEXT

END

The whole procedure can now be written out. We are presuming
that DATA, LINK, FIRST, and AVAILABLE are global to this
procedure. The type of entries in the list is ENTRYTYPE, which
could be PACKED ARRAY[1..51 OF CHAR for our example, but the
procedure would also be correct for other types such as INTEGER.

(♦ INSERT NEW DATA INTO LINKED LIST *)
PROCEDURE INSERT(NEWDATA:ENTRYTYPE);

VAR NEW,PREVIOUS,NEXT: INTEGER;
BEGIN

(♦ OBTAIN STORAGE ELEMENT FOR NEW DATA *)
NEW:-AVAILABLE;
AVAILABLE:-LINK[AVAILABLE I ;
(* PLACE NEWDATA IN STORAGE ELEMENT *)
DATA[NEW]:-NEWDATA;
(♦ SEE IF NEWDATA GOES FIRST IN LIST *)
IF (FIRST-NULL) OR (NEWDATA<DATAI FIRST]) THEN

BEGIN
LINKlNEW]:-FIRST;
FIRST:-NEW

END
ELSE

BEGIN
(* FIND PLACE TO INSERT NEW DATA ♦)
PREVIOUS:-FIRST;
NEXT:-LINK[FIRST];
WHILE (NEXTONULL) AND (NEWDATA>-DATA [NEXT]) DO

BEGIN
PREVIOUS:-NEXT;
NEXT:-LINK[NEXT]

END;
(♦ ADJUST LINKS TO MAKE INSERTION *)
LINK[PREVIOUS]:-NEW;
LINK[NEW]:-NEXT

END
END ;

So far we have ignored a problem
The conditions for both the IF statement
an element of the DATA array which may
To avoid an out-of-bounds index, the

in our INSERT procedure,
and the WHILE loop use
have the index NULL (0).

DATA array should be

Records and Nodes 223

declared with a lower bound of zero. DATAlO] should be given a
value, although the value is not actually part of the list.

DELETING FROM A LINKED LIST

The process of deletion is very similar. We will just record
the complete procedure.

(* DELETE SPECIFIED DATA FROM LINKED LIST *)
PROCEDURE DELETE(OLDDATA:ENTRYTYPE);

VAR PREVIOUS,OLD; INTEGER;
(* FIND THE ITEM TO BE DELETED ★)
BEGIN

OLD:-FIRST;
WHILE DATAlOLDlOOLDDATA DO

BEGIN
PREVIOUS:-OLD;
OLD;-LINK[OLD]

END;
(* REMOVE ITEM FROM LIST *)
IF FIRST-OLD THEN

FIRST;-LINK[OLD]
ELSE

LINK[PREVIOUS]:-LINK[0LD];
(* ADD STORAGE ELEMENT TO FREE LIST *)
LINK[OLD];-AVAILABLE;
AVAILABLE;-OLD

END;

Before using these two procedures we must set FIRST to NULL, set
AVAILABLE to 1, and LINK[l] to 1+1, with the exception of the
last element which should have a NULL link.

RECORDS AND NODES

We have used links that
arrays that hold the actual data
the data and the link to form
use these declarations

are in separate arrays from the
values. Sometimes we collect
a record. For example, we could

TYPE NODE¬
RECORD

DATA: ENTRYTYPE;
LINK: INTEGER

END ;
VAR LIST: ARRAY[1..MAXQUEUE1 OF NODE;

Each item in a list is called a node. With these declarations,
we refer to the data in node I as LISTlIl.DATA and the link as
LIST[I 1 .LINK.

224 Data Structures

STACKS

In the preceding sections we showed how to insert and delete
items for a linked list. The insertions and deletions could be
anywhere in the list. In each case, as the list of data items
was changed, a second linked list of available storage elements
was maintained. A deletion from the list of data items resulted
in an addition to the list of available elements; an addition in
the data list produced a deletion in the available list. The
actions involving the available storage list were much simpler.
This is because the additions and deletions for it always were to
the beginning of that list. A list that is restricted to having
entries to or removals from the beginning only is called a stack.
The situation is similar to a stack of trays in a cafeteria.
When you want a tray you take it off the top of the stack; when
you are through with a tray you put it back on the top. V7hen a
list is used as a stack, we often call the pointer to the
beginning of the list TOP. When an entry is removed from the top
we say we have popped an entry off. TOP must then be adjusted to
point at the next entry. When we add an entry we say we have
pushed it onto the stack.

Because a stack change only occurs at one end, it is
convenient to implement a stack without using a linked list; an
ordinary array will do. In our examples, a linked list is
necessary for our stack of available storage elements because
they are scattered all over. Stacks have other uses so we will
show how a stack can be implemented using an array. We will call
the array STACK. The bottom of the stack will be in STACK(I),
the next entry in STACK(2), and so on. Sorry if our stack seems
to be upside downl Here is a stack of symbols:

TOP 4

STACK(1)
STACK(2)
STACK(3)
STACK(4)

+

+

/

This sort
arithmetic

of stack
expressions

is often used
into machine 1

in compilers
anguage.

for translating

Before
setting TOP

using the
to zero:

stack we in itialize it to be empty by

TOP:-0 ;

To add an item to the stack we can call the procedure PUSH:

PROCEDURE PUSH(SYMBOL:ENTRYTYPE);
BEGIN

TOP:-TOP+1;
STACKfTOP]:-SYMBOL

END ;

Recursive Procedures 225

To remove the top item from the stack we can call the procedure
POP :

PROCEDURE POP(VAR SYMBOL:ENTRYTYPE);
BEGIN

SYMBOL:-STACK[TOP];
TOP;-TOP-1

END;

The variable TOP and the array STACK must be global to the PUSH
and POP procedures. Stacks may be implemented in other ways than
shown here.

RECURSIVE PROCEDURES

If we want to read a list of integers and print it in reverse
order then we can program it this way using a stack.

(* Print numbers in reverse order ♦)
WHILE there are more numbers to read DO

BEGIN
Read number N;
Push number N onto the stack

END;
WHILE the stack is not empty DO

BEGIN
Pop number N from the stack;
Write number N

END

Another way of programming this is by using a recursive
procedure, which is a procedure that calls itself. In the
execution of a recursive procedure there is an implicit stack.

$JOB 'LEN VANEK'
PROGRAM REVERSE(INPUT,OUTPUT);

PROCEDURE PRINTINREVERSE;
VAR N: INTEGER;
BEGIN

IF NOT EOF THEN
BEGIN

READLN(N);
PRINTINREVERSE; (* PRINT ANY OTHER NUMBERS *)
WRITELN(N)

END
END ;

BEGIN
PRINTINREVERSE

END .
$DATA
5

226 Data Structures

The main program calls PRINTINREVERSE. This causes local
variable N to be created and 5 is read into it. Next,
PRINTINREVERSE calls itself, which creates a new new local
variable called N, which has 10 read into it. These two local
variables are quite separate from each other even though they
have the same name. Next, PRINTINREVERSE calls itself again, but
finding that EOF is now true, it returns without reading. This
return is to the activation of PRINTINREVERSE where N is 10.
After 10 is printed, the return goes back to the activation in
which N is 5 and 5 is printed. Then a return is made to the main
program and execution is complete.

Each new recursive call to PRINTINREVERSE creates a new copy
of local variable N. These variables are stacked in a LIFO
manner (last in first out), so that each return finds the
previous value of N. Because of this implicit creation of a
stack of variables, we do not have to use an array to implement a
stack.

QUEUES

Another
are made at
beginning.
an entry is
last entry.

specialized type of list is a queue. For it, entries
the end of the list, deletions are made from the
Rather than search for the end of the list each time

made, it is usual to have a pointer indicating the
Queues involve using things in a manner referred to

as, "First in first out" (FIFO) or, "First come first served"
(FCFS). This is the usual way for a queue waiting for tickets at
a box office to operate.

A queue is not so easy as a stack to implement using an
array. It is always growing at one end and shrinking at the
other. If an array is used, when the growth reaches the maximum
limit of the
a queue of
maximum of 8
person to be

array, we start it at the beginning again
users of a computer waiting for service,

elements. Five people are in the queue,
served is named GREEN.

Here is
We have a
The next

FIRST LAST

QUEUE[1]
QUEUE[2]
QUEUE[3]
QUEUE[4]
QUEUE[51
QUEUE[6]
QUEUE[7]
QUEUE[8]

GEORGE
JOHNSTON

GREEN
LINNEMANN
JACOBS

Here are procedures used to ENTER or LEAVE
use a constant named MAXQUEUE whose value is

size of the queue. change the maximum

this
8 so

queue.
we can

We will
easily

Before using these
procedures the queue can be initialized to be empty by setting
FIRST to 1 and LAST to MAXQUEUE.

Queues 227

CONST MAXQUEUE-8;
PROCEDURE ENTER(NAME:ENTRYTYPE);

BEGIN
LAST:-LAST+1;
IF LAST > MAXQUEUE THEN

LAST:- 1;
QUEUE I LAST] :-NAME'

END;

PROCEDURE LEAVE(VAR NAME:ENTRYTYPE);
BEGIN

NAME:-QUEUE[FIRST I ;
FIRST:-FIRST+1;
IF FIRST > MAXQUEUE THEN

FIRST:-1
END;

We have used wrap-around or modulo arithmetic in that we
wanted FIRST and LAST to keep increasing until they reach
MAXQUEUE and then to wrap back to 1. The IF statements in the
ENTER and LEAVE procedures make sure that wrap around occurs.
There is a MOD operator that accomplishes wrap-around by
returning the remainder of dividing one integer by another. We
can write

FIRST:-(FIRST MOD MAXQUEUE)+1;

This means to set FIRST to one more than the rema
divided by MAXQUEUE. As long as FIRST has a value
one less than QUEUESIZE, then this just adds one
if FIRST equals MAXQUEUE then MOD returns a value o
added to one causes FIRST to be assigned the val
can shorten the^ENTER and LEAVE procedures by using

inder of FIRST
of 1 , 2 up to
to FIRST. But
f zero which
ue one. So we

MOD.

Queues can be implemented by linked lists as well as by
simple arrays. Queues are used in the programs called operating
systems that operate computer systems. Different jobs requiring
service are placed in different queues, depending on the demands
they are making on the system's resources and the priority that
they possess to be given service. Also, in programs that
simulate other systems such as factories, queues are maintained
to determine the length of time jobs are required to wait to be
served when other jobs are competing for the same production
facilities.

228 Data Structures

TREES

A linked list is an efficient way of storing a list that is
changing with time, but it introduces an inefficiency in
retrieval of information from the list. In Chapter 14 we saw
that a binary search for an item in a list is much more efficient
for long lists than a linear search. Unfortunately, there is no
possibility of doing a binary search in a linked list; we must
start at the beginning and trace our way through. There is no
direct access to the middle of a linked list. It is for this
reason that a more complicated data structure called a tree is
used. We can get the efficiency of a binary search by having the
elements linked into a binary tree structure.

To show how a binary tree is formed, we will look at the
example of our list of names of animals:

3--> CAT
2-> dog

DUCK
1-> FOX

GOOSE
PIG
SNAKE

To do a binary
added SNAKE to the

begin in the middle,
has a middle entry.

so

We have
If we

we then

search we should
list so the list

are looking for the name CAT we find that CAT < FOX,
discard the middle entry and the last half of the list. The next
comparison is with the middle entry of the remaining list, namely
with DOG. Since CAT < DOG we eliminate the last half of the
smaller list. By this time, we are down to one entry, which is
the one we are looking for. It took three comparisons to get
there. A linear search for CAT would, as it happens, have taken
only 1 comparison. On the average, the binary search takes fewer
comparisons than a linear search. A short list is not a good
example for showing off the efficiency of binary searching, but
it is much easier to write out all the possibilities.

We will now look at the binary tree that would be used to
give the same searching technique. Here it is:

Adding to a Tree 229

Each data element in the tree structure consists of three
parts, the DATA itself and two links that we designate as
LEFTLINK and RIGHTLINK. The word FOX is in a special position in
the tree, called the root. From FOX we have branches going to
the left to DOG and to the right to PIG. In a sense, DOG is in
the root position of a smaller tree, what we call the left
subtree of the main tree. PIG is at the root of the right
subtree. The words CAT, DUCK, GOOSE, and SNAKE are at the end of
branches and are called leaves of the tree. All the data
elements are in nodes of the tree; FOX is the root node and CAT
is a leaf node. To search for an entry in a binary tree, we
compare the element in the root node with the one we are seeking.
If the root is the same, we have found it. If the root is larger
we follow the LEFTLINK to the next entry; if smaller, we follow
the RIGHTLINK. We are then at the root of a smaller tree, a tree
with half as many entries as the original. The process is then
repeated until the looked-for data is found.

Here is our tree structure as it might be stored in three
arrays called DATA, LEFTLINK, and RIGHTLINK. The variable ROOT
holds the link to the root element. We have jumbled up the
sequence to show that the actual order in the DATA array makes no
difference. A zero link is used to indicate the end of a branch.

ROOT 4

DATA

[1] GOOSE
[2] SNAKE
[3] DOG
[4] FOX
[5] PIG
[6] CAT
[7] DUCK

LEFTLINK

0
0
6
3
1
0
0

RIGHTLINK

0
0
7
5
2
0
0

Starting at ROOT, we find the root is in DATA[4]. LEFTLINK[4]
leads us to DATA[3] which is DOG. RIGHTLINK!3] leads us to
data!7] which is DUCK. You can see how it works.

A tree structure is a hierarchical structure for data; each
comparison takes us one level down in the tree.

ADDING TO A TREE

To add a data item to a tree structure we simply look for the
element in the tree in the usual manner, starting at the root.
If the element is not already in the tree, we will come in the
search to a link that is null (zero). This is where the element
belongs. In our example, if we want to add COW, we would start
at FOX, then go to DOG, then to CAT. At this point we would want
to follow the right link of CAT, but we find a zero. If we
stored the new entry in DATA!8], we would change RIGHTLINK!61 to
8 and set

230 Data Structures

DATA[8] LEFTLINK[8] RIGHTLINK[8]

COW 0 0

As we add 1
not well balanced
well balanced,
using a tree stru
balanced. We s
unbalanced by add
using the method
unlikely to be we

terns to a tree, the tree becomes lopsided; it is
. Searching efficiency depends on trees being
so that in an information retrieval data bank
cture, an effort should be made to keep the tree
tarted with a balanced tree and it became
ing a new item. If a tree is grown from scratch

we have described for adding a new entry, it is
11 balanced.

DELETING FROM A TREE

Removing
than adding a
element to
difficult if
that is, if
pointing to i
an ordinary 1
bypass it:

an entry from a tree is a more difficult operation
n entry. The same method is used to find the
be deleted, but then the problem comes. It is not
both links of the element to be deleted are zero,
it is a leaf. We just chop it off and make the link
t zero. If only one link is zero it is similar to
inked list and deletion is similar to that. We just

LINK

If neither link is zero in the element to be deleted, we must
move another element into its position in the tree. In our
original tree, if FOX is to be deleted, it must be replaced by an
element that is larger then all other elements in the left
subtree or smaller than all the elements in the right subtree.
This means that either DUCK or GOOSE is the only possible choice.
The one to be moved must be deleted in its present position
before being placed in its new position.

Remember, in a linked structure, we never move a data item
from its physical location in the data array; we only change the
links to alter its logical position.

Printing a Tree in Order 231

PRINTING A TREE IN ORDER

Trees are used where searching and updating are the main
activities. Sometimes we must print out the contents of a tree.
We must be systematic^ about it and be sure to print every node.
We will show how to print it alphabetically.

An algorithm for printing a tree alphabetically can be
written in this way:

Print a tree
alphabetically

Print the left
subtree

Print the
root

Print the right
subtree

We see that we have described our algorithm
parts. The middle part, "Print the root," is ea
two require us to, "Print a tree." This is
problem is, to "Print a tree." We have defined
problem in terms of the original problem,
definition is called a recursive definition of
seems rather pointless, as if we were just going
it really is not. The reason it is not pointle
tree we are attempting to print when we say
subtree," is a smaller tree than the original tr
"Print a tree." When we try to print the le
this solution:

in terms of three
sy, but the other
exactly what our

the solution to a
This kind of

a solution. It
in a circle, but

ss is that the
, "Print the left
ee when we said
ft subtree we get

Print the left
subtree

Print the left subtree
of the left subtree

Print the root Print the right
of the left subtree of the
subtree left subtree

This time the left subtree of the left subtree has to be printed.
It is smaller still. The algorithm is again repeated. Each
application of the algorithm is on a smaller tree, until you
reach a point where there is a zero link and there is left
subtree at all. Then the action of printing it is to do nothing:
no tree, no printing. That is how recursive algorithms work. In
programming terms, the algorithm calls itself over and over, each
time to do a reduced task, until the task is easy to do.

In Pascal a procedure may indeed call itself as we saw in the
example of printing a list of numbers in reverse order. Here is
a Pascal procedure for printing a tree in alphabetic order, given

232 Data Structures

that its root is ROOT and its data and links DATA, LEFTLINK and
RIGHTLINK are global variables.

PROCEDURE PRINTTREE(ROOT:INTEGER);
BEGIN

IF LEFTLINKiROOT lONULL THEN
PRINTTREE(LEFTLINK[ROOT]);

WRITELN(DATA[ROOT]);
IF RIGHTLINK [ROOT lONULL THEN

PRINTTREE(RIGHTLINK[ROOT])
END ;

Each time the procedure is entered for a new subtree, a
different node is referred to by ROOT. For this job, a recursive
procedure is very easy to program. It is much more difficult to
program this job non-recursively. In a recursive algorithm, each
time a program calls itself, a record must be kept of the point
in the program where the procedure was called, so that control
can return properly. Each new activation of the procedure gets
new parameters and local variables; in this example there are no
local variables but each activation of PRINTTREE gets a different
value of ROOT. As the procedure recursively calls itself, a list
is built of the points of return. Each point of return is added
on top of the stack of other points of return. Finding the way
back involves taking return points, one after the other, off this
stack. This is all set up automatically by the compiler.

CHAPTER 16 SUMMARY

In previous chapters we have presented arrays and records,
which are data structures provided by PS/k. In this chapter we
showed how to build up new data structures using arrays. Some of
these new data structures use links to give the ordering of data
items. The link (or links) for a given
index of the next item. The following i
discussed:

Linked list - a link(
in the list is
present item,
items, as given
different from
links.

found by following
The physical ordei

by their positions
their logical ord<

tern gi ves the a r r ay
lor ta >nt t erms were

ems . The next item
a li nk from the
of a col lectio n of
in a n array, i s

r , as gi ven by the

y

j

Inserting into a linked list - a new data item can be
inserted by changing links, without actually moving data
items.

Deleting from a linked list - a data item can be deleted by
changing links, without moving data items.

Available list
not in use.

the collection of data elements currently

Chapter 16 Exercises 233

Stack - a data structure that allows data items to be added,
or pushed, on to one end and removed, or popped, from
the same end. A stack does not require the use of
links. A stack handles data items in a last-in-first-
out (LIFO) manner.

Queue - a data structure that allows data items to be added
at one end and removed from the other. A queue handles
data items in a first-in-first-out (FIFO) manner.

Binary tree - a data structure in which each item or node has
two links, a left link and a right link. The left link
of a node locates another node and with it a subtree.
Similarly, the right link locates a subtree. There is a
unique beginning node called the root. If both links of
a particular node are null, meaning they do not
currently locate other nodes, then the node is called a
leaf .

Recursive procedure - a procedure that calls itself. Each
time the procedure is called, it is allocated new formal
parameters and local variables.

CHAPTER 16 EXERCISES

1. The FLY-BY-NITE Airline company is computerizing its
reservations system. There are four FLY-BY-NITE flights with the
following capacities:

FLIGHT #1
FLIGHT #2
FLIGHT #3
FLIGHT #4

5 seats
5 seats
8 seats
4 seats

The information
linked list. At
following diagram

for passenger reservations is to be stored in a
some point during the booking period, the
might represent the current passenger bookings.

FLIGHT #1

FLIGHT #2

FLIGHT #3

FLIGHT #4

The above diagram shows the first element in each list holding
the number of seats remaining. Each succeeding element holds the
name of a passenger and either points to the next element or
holds a 0 to indicate the end of the linked list.

In order to set up such a linked list system you will need
two arrays. The first, called FLIGHT, will contain the four

234 Data Structures

"first" elements. Each of these elements holds two pieces of
information, the number of seats remaining and the location of
the first passenger.

The second array called PASSENGER holds all the passengers.
If all seats on all flights are taken, there will be CAPACITY-22
passengers. Hence PASSENGER will need a maximum of CAPACITY
locations. Each element of the PASSENGER array contains two
pieces of information, the passenger's name and the location of
the next passenger, if any.

The PASSENGER array must be declared as an array of records
in order to contain two different data types:

TYPE ENTRY-
RECORD

NAME: PACKED ARRAY[1..20] OF CHAR;
LINK: INTEGER

END ;
VAR PASSENGER: ARRAY[1..CAPACITY] OF ENTRY;

This will designate each element of PASSENGERlJ] to contain two
parts:

PASSENGER[J1 .NAME and PASSENGER IJ1 .LINK

Before any events happen, the free locations must be linked
together. Arrange that each PASSENGER[J].LINK contains a value
J+1, except PASSENGER[CAPACITY 1.LINK which contains a 0 as end of
the list.

A variable AVAILABLE contains the location of the head of
this chain of available locations. For the example given above,
AVAILABLE contains 10 and PASSENGER could have these values:

passenger!1] passenger!5) passenger!9)
NAME HAMACHER NAME LEHMAN NAME VRANESIC
LINK 6 LINK 0 LINK 0

passenger!2] passenger!61 passenger!101
NAME BOULTON NAME FARKAS NAME
link 5 LINK 7 LINK 1 1

passenger!3) passenger!?]
NAME HAM NAME MCNAUGHTON
LINK 8 LINK 0

passenger!4] passenger!8] PASSENGER!22]
NAME HEHNER NAME WILSON NAME
link 3 LINK 9 LINK 0

The reservation system is to accept four types of transactions:

Type 1 is a request for a reservation. The data card contains the
code word RES, name of the passenger, and the flight number.

Chapter 16 Exercises 235

Type 2 is a request to cancel a reservation. The data card
contains the code word CAN, name of passenger, and the flight
number.

Type 3 is a request to print out the number of seats remaining on
a specified flight. The data card contains the code word
SEATS and a flight number.

Type 4 is a request to print out a passenger list for the flight
indicated. The data card contains the code word LIST and a
flight number.

Each type of transaction is to be handled by a procedure.
PASSENGER, FLIGHT and AVAILABLE are global variables; all other
variables are local to the procedure in which they are used.
Here are descriptions of the procedures:

ADD(WHO,NUMBER). Adds passenger WHO to flight NUMBER. If that
flight is filled, a message is printed to that effect. ADD
uses a location in PASSENGER and must update AVAILABLE.

CANCEL(WHO,NUMBER). Cancels the reservation made in the name of
WHO on flight NUMBER. The location in PASSENGER is returned
to the free storage pool. AVAILABLE must be updated.

INFO(NUMBER). Prints out number of seats remaining on flight
NUMBER.

PRINT(NUMBER). Prints a passenger list for flight NUMBER.

The data should simul
of type 1, 2, 3, 4
reasonable to assume
persons holding reserv
are, you should not as
off the ground, severe

ate a real reservation system in that input
should be intermixed. It would seem
that most cancellations would be made by

ations. However, people being what they
sume too much. In order to get your system
1 reservation cards should be first.

Write and test each procedure as a main procedure befo
putting the procedures together. Write PRINT first and call
from ADD or CANCEL to help in debugging. If you work in pairs
and this is strongly recommended for this exercise - one pers
should program ADD and PRINT, the other CANCEL and INFO. Turn
several runs which show the capabilities of your system. Be su
to test "odd" situations as well as the obvious ones.

re
it

on
in
re

2. The INSERT and DELETE routines in this chapter use zero as
the value of NULL. Lines such as

IF(FIRST-NULL) OR (NEWDATA<DATA[FIRST]) THEN

cause an out-of-bounds
DATA array allows a zero
NULL can be any negative

array index when FIRST-NULL unless the
subscript. Rewrite INSERT and DELETE so
value.

3. The INSERT procedure in this chapter assumes that there are
always enough elements to hold all items. Modify it to print an

236 Data Structures

error message when there is not enough room for a new item. The
DELETE procedure assumes that the item to be deleted is actually
in the list. Modify it to print an error message when the item
to be deleted is not in the list.

Chapter 17

PS/8: POINTERS AND

FILE BUFFERS

In this
Pascal that
managing the
and file buff

chapter we
are helpful
reading and

er s .

i ntroduce PS/8, which has features of
in organizing data structures and
writing of files. These are pointers

POINTERS

We hav
kind of dat
array stru
that is des
element of
record, one
linked list
data item a
list was
pointer typ
the last
word in Pas
value at al

e been looking at linked lists and have shown how this
a structure could be implemented in Pascal using the
cture. The Pascal language provides a data structure
igned to suit the processing of linked lists. Each
the linked list is defined as a record and, within the

of the fields is a pointer to the next element in the
. Suppose that our list element consisted of a single
nd a link, and that the link to the first item in the
stored in the variable FIRST. FIRST would be of a
e as would the LINK of each list item. The LINK of
item in a list has the value NIL. NIL is a reserved
cal and is the special pointer value that refers to no
1.

In a program which uses
linked lists we would have to
of this kind:

these Pascal facilities for handing
have definitions and declarations

237

238 PS/8: Pointers and File Buffers

TYPE ENTRYTYPE- PACKED ARRAY[1..51 OF CHAR;
DATALINK- tLISTRECORD;
LISTRECORD-

RECORD
DATA; ENTRYTYPE;
LINK; DATALINK

END;
VAR FIRST; DATALINK;

ITEM; ENTRYTYPE;

The definitions of the DATALINK and LISTRECORD types are
interlocking (a characteristic of linked lists). We say that the
data structures are recursive because in their definitions they
refer to each other. The vertical arrow (t) in the definition of
the DATALINK type indicates that it is a pointer type pointing to
values of the type LISTRECORD. Then with the definition of the
type LISTRECORD we see that the LINK field of the RECORD type has
type DATALINK. The data part of the list element is of type
ENTRYTYPE which has been defined here. We can store values such
as the strings DOG, CAT, FOX, etc. in the data part.

In addition we need to define FIRST as a pointer type of the
same type, DATALINK, as each of the LINK parts of the list
elements. The variable ITEM will contain a data item of the same
type as those in the linked list.

We will now give a procedure for searching the list to find
if the data in ITEM is in the list. If it is we will set the
place where it can be found in the pointer type variable PLACE.
If it is not in the list PLACE will be set to NIL.

In the procedure we will use the notation

LOCATIONt

which means the list element which is pointed to by the pointer
in LOCATION. The DATA field for this element is LOCATIONf.DATA.
Here is the procedure;

PROCEDURE LOCATE(ITEM;ENTRYTYPE; FIRST;DATALINK;
VAR PLACE;DATALINK);

VAR LOCATION .-DATALINK ;
BEGIN

LOCATION;-FIRST;

PLACE;-NIL; (* VALUE IF ITEM NOT FOUND ♦)
WHILE (PLACE-NIL) AND (LOCATIONONIL) DO

IF LOCATIONt.DATA-ITEM THEN
PLACE;-LOCATION

ELSE

LOCATION;-LOCATION!.LINK

is not in the list then LOCATION ends with the value
LOCATION becomes NIL, then LOCATIONt.DATA is
because LOCATION does not point to a list element.

END;

If the ITEM

NIL. Once

meaningless

Memory Management with Pointers 239

It is tempting to rearrange the statements and write the WHILE

condition as

WHILE (LOCATION S .DATAOITEM) AND (LOCATIONONIL) DO

But this would cause an error when the ITEM is not in the list,

because LOCATION would become NIL.

MEMORY MANAGEMENT WITH POINTERS

Our example procedure LOCATE shows how pointers can be used

in representing lists. We follow the FIRST pointer to the first

item and then we locate successive items by pointers within

previous items. This means, as in the previous chapter, that the

items can be scattered about, not necessarily in the same place.

But pointers provide still more flexibility than we had in the

last chapter, where we used arrays to hold the list items. All

the items for the list had to be in one array and we had to know

the maximum number of items so we could declare the bounds of the

arrays.

With pointers we do not need to know when we are writing the

program how many items might be in a list, because the items are

allocated by a predeclared procedure NEW in this way;

NEW(pointer);

The NEW procedure finds space for the item and sets the value of

the pointer to point to this space.

Suppose that we wanted a procedure to insert a data item

NEWDATA into our linked list, assuming that the data items in our

list are ordered alphabetically. As before the main program must

have the type definition and variable declarations that we have

shown. Here is the procedure

240 PS/8: Pointers and File Buffers

PROCEDURE INSERT(NEWDATA:ENTRYTYPE);

VAR PLACE,PREVIOUS,NEXT: DATALINK;

FOUND: BOOLEAN;

BEGIN

NEW(PLACE); (* OBTAIN STORAGE ELEMENT FOR NEWDATA *)
PLACE f .DATA:-NEWDATA;

NEXT:-FIRST;

FOUND:-FALSE;

WHILE(NOT FOUND) AND (NEXT<>NIL)D0

IF NEWDATA<NEXTt.DATA THEN

FOUND:-TRUE

ELSE

BEGIN

PREVIOUS:-NEXT;

NEXT:-NEXT t .LINK

END;

(♦ STORE LINK FOR NEWDATA ★)

PLACE\.LINK:-NEXT;

(* ADJUST LINKS TO MAKE INSERTION *)
IF NEXT-FIRST THEN

FIRST;-PLACE
ELSE

PREVIOUSt.LINK;-PLACE
END ;

You can see that memory management is done for you

automatically by the NEW procedure. There is no need to Iceep a

linked list of available locations as we did when we used arrays

to store linked lists. This kind of memory allocation is said to

be dynamic allocation. Only as much memory as is needed at any

time has to be reserved for the storage of a linked list. When

you use arrays their size must be declared at the time the

program is compiled. But with pointers the memory, as needed, is
requested at execution time.

You can return any unused memory locations to the system so

that they can be used again. This is done by calling the
predeclared procedure DISPOSE by

DISPOSE(pointer to element no longer needed);

The procedure would be used whenever a data item is deleted from

a linked list and its memory location no longer needed.

DANGLING POINTERS

When DISPOSE is used, there is a danger that the programmer

must avoid. Suppose a program has this sequence of statements
involving pointers P and Q.

NEW(P);

Q:-P; (★ Q LOCATES SAME ITEM AS DOES P ♦)
• • •

DISPOSE(P); (* STORAGE FOR P'S ITEM IS FREED *)

Dangling Poin ters 241

...(Now what does Q point to?)

Pointer Q is made to locate an item, and then that item is
disposed of. We say Q is a dangling pointer because it is left
pointing at a discarded object. After the DISPOSE we must not
use Qf, because Qt is now meaningless. The analogous problem
with arrays is A[l] when I is not within the declared bounds of
A; this too is meaningless and must be avoided. Many Pascal
systems do not check for dangling pointers and a program may
cause disastrous damage to itself or other programs if it changes
a discarded item as in the statement Qf:“VALUE. The problem is
that the space used for the old item may have been re-used for a
new item and the new item may be damaged.

USING POINTERS

In principle we never need to use pointers; we could use
arrays instead as we did in the last chapter. However, pointers
provide two main advantages. First, they are somewhat more
efficient than arrays, for example

A[I].DATA:-VALUE

is slower to execute than

Pt.DATA:-VALUE

Second, they allow memory to be traded off from one k
to another. For example, suppose a program first need
many items of type T and then successively needs to
of these items but more items of type U. This i
accomplish using pointers by creating items of types
needed using NEW and then deleting them with DISPOSE
are no longer needed. But with arrays, this wou
difficult.

ind of item
s to store
store fewer
s easy to

T and U as
when they

Id be quite

Just as arrays can contain vari
and other arrays), pointers can
Elaborate data structures, including
pointers, records and arrays.

ous types
point to
trees, can

(including records
various types,

be built up using

Sometimes
pointers. For

a WITH statement can simplify a program that uses
example, instead of

LOCATION t .LINK:-NEXT;
LOCATION t .DATA:-NEWDATA

we could write

WITH LOCATIONt DO
BEGIN

LINK:-NEXT;
DATA:-NEWDATA

END

242 PS/8: Pointers and File Buffers

Within the WITH statement, the value of LOCATION should not be
changed. For example, the BEGIN...END should not include the
statement LOCATION:-PREVIOUS.

FILE BUFFERS

As a file is read into memory, data items pass from the file
to intermediate storage called the file buffer. File buffers are
similar to items located by pointers, for example, the file
buffer for file F is Ft. Suppose that an input file is declared
by

TYPE FILEITEM-
RECORD

(field declarations)
END;

VAR F: FILE OF FILEITEM;
V: FILEITEM;

In this case the data items in the file are records. So far in
order to read this file, assuming that it has been RESET, we
would use the statement

READ(F,V);

The READ is a predeclared procedure in Pascal which really
consists of two more basic Pascal statements. These are

V:-F f ;
GET(F)

In these Ft means "the buffer associated with file F". The first
statement assigns the current contents of the file buffer to
variable location V. Note that V has been declared to be of the
same data type as the data items in the file. The statement
GET(F) is an invocation of the procedure GET which places the
next data item on file F, if any, in the buffer associated with
file -F, namely Ft. If there are no more items in the file then
Ft becomes undefined, in a way that depends on the particular
Pascal implementation, and EOF(F) becomes true. Attempting to
execute GET(F) when EOF(F) is true is an undefined operation.

The RESET operation, which must be performed on a file F
before any READ(F,V) statement is executed, resets the file to
the first position. The file buffer Ft is assigned the first
value in the file, if any; if none exists. Ft is undefined.
EOF F becomes false unless the file is empty in which case
EOF(F) becomes true.

When a
the present
true. When

file F is opened for output by a REWRITE(F) statement
contents of the file are discarded and EOF(F) becomes
a call to the predeclared procedure

WRITE(F,expression)

File Merge Using Buffers 243

is given it is equivalent to these two more basic Pascal statements

Ft:“express ion;
PUT(F)

Here the value ^ of the expression is assi
associated with file F and then by the PUT proc
of the buffer are appended to the end of the
be true before the PUT and remains true after,
taken place the value of Ft becomes undefined.

gned to the buffer
edure the contents
file. EOF(F) must

When writing has

In previous chapters, all file accessing was
and WRITE and not GET and PUT, so we did not dir
the file buffer. But we can use it directly as
shows.

done using READ
ectly refer to
the next example

FILE MERGE USING BUFFERS

In Chapters 13 and 15 we showed how to merge two sorted files
to make a third sorted file. The following program merges the
files MASTER and TRANSACTION to form the new MASTERFILE. The
items in these files are of a record type that is ordered by a
field called KEY.

244 PS/8: Pointers and File Buffers

PROGRAM MERGE(OUTPUT,MASTER,TRANSACTION,NEWMASTER)•

TYPriTEMl"'’ transaction PXIES TO MAKE LwmAsTEP

RECORD

KEY: type of key;
Other fields

END;

VAR master,TRANSACTION,NEWMASTER: FILE OF ITEM- BEGIN xxc.ra,

RESET(MASTER);

RESET(TRANSACTION);
REWRITE(NEWMASTER);

‘NOT EOF(TRANSACTION)) DO
IF MASTERt.KEY < TRANSACTIONt.KEY THEN

BEGIN

g“step'* *)

PUT(NEWMASTER)
END

ELSE

BEGIN

“NS:c;iON)r""°”''- '* —SACTION „
PUT(NEWMASTER)

END;

(♦COPY REST OF MASTER OR TRANSACTION FILE .)
WHILE NOT EOF(MASTER) DO

BEGIN

NEWMASTER t :"MASTER » ;
get(MASTER);

PUT(NEWMASTER)
END;

WHILE NOT EOF(TRANSACTION) DO
BEGIN

NEWMASTERf:-TRANSACTIONt;
get(TRANSACTION);
PUT(NEWMASTER)

END
END.

This procedure uses
master file's buffer.

master.KEY to access
The statement

the KEY field in the

NEWMASTER f :-MASTER t ;

copies the entire record
master file's buffer. This
and file buffers directly
READ and WRITE because READ
the file items.

in the master file
method of merging
is somewhat more
and WRITE involve

's buffer to the new
using GET and PUT

efficient than using
extra copying of

Chapter 17 Summary 245

CHAPTER 17 SUMMARY

In this chapter we introduced programming language features
called pointers and file buffers. Pointers are particularly
suited for constructing efficient linked lists and they allow
dynamic allocation of variables. A file buffer is the
intermediate storage that items on a file are read into or
written from. The following important terms were discussed in
this chapter:

Pointer - In Pascal each pointer can point to an item of only
one type, for example pointer P can locate only values
of type T:

VAR P: t T;

This declaration of P cr
yet point to a value. Poi
compared for equality and
also a pointer to T then
locate the same item o
locates the same item as P
Qt:"Pf, the item pointed
the item pointed to by P.

eates a pointer but P does not
nter s to the same type can be
assigned. For example if Q is
P"Q determines if P and Q
r are both NIL. After Q:-P, Q

(or is also NIL) . After
to by Q has the same value as

NIL - any pointer can be assigned or compared to the special
pointer value NIL.

NEW - a predeclared procedure that creates an item.

NEW(P)

creates an item of type T, where P is of type tT
(pointer to T). P points to the new item.

DISPOSE - a predeclared procedure that frees storage located
by a pointer. Given that P locates an item,

DISPOSE(P)

frees the storage used by the item.

Dangling pointer - a pointer Q is dangling if it is left
pointing at an item that was disposed of using another
pointer. Dangling pointers are meaningless and the
"ghost items" they locate must not be used.

File buffer - given file F declared as FILE OF T, then Ft is
the intermediate storage for the file.

PUT - The statement PUT(F) causes the buffer value Ft to be
appended to file. EOF(F) must be true before PUT(F) is
executed and remains true afterwards.

246 PS/8: Pointers and File Buffers

GET - The statement GET(F) causes the buffer value Ft to
receive the next value in the file if any. EOF(F) must
be false before GET(F) is executed. EOF(F) becomes true
if the file contains no more values, in which case Ft
becomes undefined.

CHAPTER 17 EXERCISES

1. Rewrite the DELETE procedure of Chapter 16 using pointers.

2. Using the description of binary trees from Chapter 16, write
procedures that insert an item into an alphabetically ordered
tree and that print the tree in order. Use pointers to represent
the tree.

3. Using pointers computerize the FLY-BY-NITE airline company
described in exercise 1 of Chapter 16.

4. Define a record called PERSON that has fields for the
person s name, sex, father, spouse, first-born, and younger
sibling. These last four fields will be pointers to this same
record type. Assuming that a collection of such records has been
appropriately interconnected using these pointers, write four
procedures which accept a pointer to such a record and (a) print
the person s children, (b) print the person's ancestors, (c)
print the person s descendants and (d) print the person's
patriarchal descendant family tree.

5. Do exercise 3 of Chapter 1 5 using file buffers.

6. Do exercise 6 of Chapter 15 using file buffers.

Chapter 18
SCIENTIFIC CALCULATIONS

Most of the applications that we have discussed so far in
this book are connected with the use of computers in business or
in the humanities. We do business applications on computers
because of the large numbers of each calculation that must be
done. A single payroll calculation is simple, but if a company
has thousands of employees, computer processing of payroll is
warranted. Computers were originally developed with scientific
and engineering calculations in mind. This is because many
scientific and engineering calculations are so long that it is
not practical to do them by hand, even with the help of a pocket
calculator.

Often the scientific laws describing a physical situation are
known in the form of equations, but these equations must be
solved for the situation of interest. We may be designing a
bridge or aircraft or an air-conditioning system for a building.
A computer can be used to calculate the details of the particular
situation.

Another important use of computers in science is to find
equations that fit the data produced in experiments. These
equations then serve to reduce the amount of data that must be
preserved. Science as a word means knowledge. The object of
scientific work is to gather information about the world and to
systematize it so that it can be retrieved and used in the
future. There is such a large amount of research activity now in
science that we are facing an information explosion. We have
talked about retrieving information from a data bank and
computers will undoubtedly help us in this increasingly difficult
and tedious job. But the problem of data reduction is of equal
importance.

In this chapter we will try to give some of the flavor of
scientific calculations, but we will not be including enough
detail for those people who will need to work with them. We will

247

248 Scientific Calculations

give only an overview of this important use of computers. In the
next chapter we will present more details and applications of
scientific calculations.

EVALUATING FORMULAS

To solve certain scientific problems we must substitute
values into formulas and calculate results. For example, we
could be asked to calculate the distance traveled by a falling
object after it is dropped from an airplane. A formula that
gives the distance in meters traveled in time t seconds,
neglecting air resistance, is

d - 4.9t^

Here the constant 4.9 is one-half the acceleration due to
gravity. Here is a program to compute the distance at the end of
each second of the first 10 seconds after the drop:

PROGRAM FALL (INPUT,OUTPUT);
(* PRINT TABLE OF DISTANCE FALLEN VERSUS TIME *)
VAR DISTANCE,TIME: REAL;

I: INTEGER;
BEGIN

TIME:-0;

(♦ LABEL TIME-DISTANCE TABLE ★)
WRITELN(' TIME DISTANCE');
FOR I:-1 to 10 DO

BEGIN
TIME:-TIME+1;
DISTANCE:-4.9*TIME*TIME;
WRITELN(TIME,DISTANCE)

END
END.

The output for this program is

TIME
1 .OOOOOE + 00
2.OOOOOE+00
3.OOOOOE+00
4.OOOOOE+00
5.OOOOOE+00
6.OOOOOE+00
7.OOOOOE+00
8.OOOOOE+00
9.OOOOOE+00
1 .OOOOOE + 0 1

DISTANCE
4.90000E+00
1 .96000E + 0 1
4.4 1 OOOE + 0 1
7.84000E + 0 1
1.22500E+02
1.76400E+02
2.401OOE+02
3.13600E+02
3.96900E+02
4.90000E+02

Predeclared Functions 249

This example prints a table of values of DISTANCE for different
times. Printing of tables is an interesting and historic
scientific use of computers. Scientific calculations are usually
done using REAL variables. In the output the distances and times
are printed with six digits in the fraction part, one digit to
the left and five to th.e right of the decimal point. Not all
these digits are significant; the constant 4.9 in the formula is
only expressed with two digits. We must realize then that only
about two digits of the distance traveled are significant.

The calculations are carried out in the computer keeping 6
digits, but this does not imply that they are meaningful. Even
if the constant in the formula were entered to 6-digit precision,
we would not necessarily have 6 significant digits in the answer.
Because computers represent REAL numbers only to a limited
precision, there are always what are called numerical errors.
These are not mistakes you make but are inherent in the way that
REAL numbers are represented in the computer. When two REAL
numbers are multiplied, the product is rounded off to the same
precision as the original numbers; no more digits in the product
would be significant. As calculations proceed, the rounding
process can erode the significance even of some of the digits
that are maintained. We usually quote numerical errors by saying
that a value is, for example.

19.25 + 0.05

This means that the value could be as high as 19.30 or as low as
19.20. If the error were higher, say 0.5 instead of 0.05, then
the values could range between 19.75 and 18.75. In this case the
fourth digit in the value is certainly not significant, and you
would say instead that the value was

19.2 + 0.5

Or we might round it off instead of truncating the insignificant
digit, and write

19.3 ± 0.5

The estimation of
numerical analysts.
should be aware of
errors.

errors is an important job that is done by
If you are doing numerical calculations, you
the fact that answers are not exact but have

PREDECLARED FUNCTIONS

Scientific calculations require mathematical functions that
are not commonly used in business calculations. For many of
these functions, procedures have already been written for Pascal;
they are predeclared in the compiler. For example, suppose for
our falling-body calculation we wanted to compute the times when
the body reached different distances. To calculate the time,
given the distance, we use this form of the same formula:

250 Scientific Calculations

t - d/4.9

Now we need to be able to calculate a square root. This can be
done by using the built-in function for square root, which is
called SQRT. We would write in the program:

TIME SQRT(DISTANCE/4.9);

Other predeclared functions available to Pascal for scientific
calculations are connected with trigonometry. They include SIN
and COS. These give the values of the sine and cosine, when the
argument of the function is in radians. ARCTAN(X) gives the
angle in radians whose tangent is X. The natural logarithm is
obtained by using LN, the exponential by using EXP.

GRAPHING A FUNCTION

be
of
i s
We
f al
pri

axi
whi
cor

function Y"f(x). When we plot a graph on the printer the lines
of printing are uniformly spaced, so we will use the distance
between lines to represent the uniform interval between the Xs.
This means that the X-axis will be vertical and the Y-axis
horizontal. To see the graph in the normal orientation, just
rotate the page 90 degrees counterclockwise. Here is a graph
for Y-X^-X-2 plotted between X»-2 and X-3:

Frequently a better understanding of a scientific formula can
had if you draw a graph of the function. In the first example
this chapter we evaluated a function at regular intervals. It
possible to use these values to plot a graph on the printer.
could, for instance, plot a distance-time graph for the

ling object. We will show one way to plot a graph on the
nter, but there are lots of other ways.

When you draw a graph of X versus Y you usually make the X-
s horizontal and have the Y-axis vertical. The values of X,
ch is the independent variable, increase uniformly; the
responding values of Y are obtained by substituting X into the

Graphing a Function 251

GRAPH OF Y
MINIMUM OF Y
MAXIMUM F Y
-2.OOOOOE+00
-1 . 80000E + 00
- 1 . 60000E + 00
- 1 . 40000E + 00
- 1 . 20000E + 00
-1 . OOOOOE + 00
~8 . OOOOOE-01
-6 . OOOOOE-01
-4.OOOOOE-0 1
-2 . OOOOOE-01

0.OOOOOE+00
2.OOOOOE-01
4 . OOOOOE-01
6.OOOOOE-0 1
8 . OOOOOE-0 1
1.OOOOOE+00
1.20000E+00
1 . 40000E + 00
1.60000E+00
1 . 80000E + 00
2.OOOOOE+00
2.20000E + 00
2.40000E+00
2.60000E + 00
2.80000E+00
3 . OOOOOE + 00

VERSUS X
-2.24000E+00
4.OOOOOE+00

*
*

*
*

>•<

*

*

*

*

*

*
♦

♦

★

*

*

*

*

♦

>ti

★

We represent the Y-value corresponding to the X of a
particular printed line by printing an asterisk in the print
position that approximates its value. We use 51 columns to print
the range of Ys. If the lowest Y-value that we must represent is
YMINIMUM and the highest is YMAXIMUM, then the 51 print positions
must represent a range of

YRANGE " YMAXIMUM - YMINIMUM

To find the print position for a value Y we compute an INTEGER
variable YPRINT from

YPRINT:-ROUND(50*(Y-YMINIMUM)/YRANGE)+1;

The value 1 is added to put YMINIMUM in the first position. We
are assuming YRANGE is not zero so that we can divide by it. To
form a string of characters for printing, we replace the blank in
the YPRINT position of a string of blanks by an asterisk. We
create a string variable called BLANKS that holds a string of
blanks. The line of characters to be printed, which is a packed
array of characters, we call YLINE. We put an X-axis on our
graph if it is in the proper range. To do this we place a

252 Scientific Calculations

vertical bar in the line of blanks and call the new variable
BASICLINE. The axis is placed in the position where a zero value
of Y would be placed. The axis does not appear at all if 0 is
less than YMINIMUM or greater than YMAXIMUM. Here is the program
segment for forming the BASICLINE.

BASICLINE:-BLANKS;
ZEROPRINT:-ROUND(50*(0-YMINIMUM)/YRANGE)+1;
IF(ZEROPRINT>-1) AND (ZEROPRINT<-51) THEN

BASICLINE[ZEROPRINT

For each line we set YLINE to BASICLINE and then place an
asterisk in the proper position. This is done by

YLINE:-BASICLINE;
YLINE[YPRINT]:-'*';

We do not print a Y-axis, but we list the X-values
corresponding to each line opposite the line.

A PROCEDURE FOR PLOTTING GRAPHS

Here is the complete procedure for plotting a graph from N
pairs of REAL values of X and Y stored in arrays of those names.
The values of X are uniformly spaced. The actual names of the
variables to be plotted will be given as arguments XNAME and
YNAME, which are of type NAME. The calling statement would be of
the form

GRAPH(X,Y,N,XNAME,YNAME);

We will call a procedure to find YMAXIMUM and YMINIMUM. It
will be called MINMAX. We are using the named constant WIDTH-51
so the graph width can be easily changed.

A Procedure for Plotting Graphs 253

(♦ PROCEDURE TO PLOT A GRAPH *)
PROCEDURE GRAPH(X,Y:TABLE; N:INTEGER ;XNAME,YNAME:NAME);

CONST WIDTH-5 1;
TYPE LINE-PACKED ARRAY[1..WIDTH] OF CHAR;
VAR BLANKS,BASICLINE,YLINE: LINE;

YMINIMUM,YMAXIMUM,YRANGE: REAL;
ZEROPRINT,YPRINT,I: INTEGER;

(* FIND SMALLEST AND LARGEST VALUES IN TABLE ARRAY *)
PROCEDURE MINMAX(VALUE:TABLE;N;INTEGER;VAR MINIMUM,MAXIMUM:REAL)

BEGIN
MINIMUM:-VALUE[1];
MAXIMUM;-VALUE[1];
FOR I:-2 TO N DO

BEGIN
IF VALUE[IXMINIMUM THEN

MINIMUM:-VALUE[I];
IF VALUE[I]>MAXIMUM THEN

MAXIMUM:-VALUE[I]
END

END ;

BEGIN
(* FIND RANGE OF Y TO BE PLOTTED *)
MINMAX(Y,N,YMINIMUM,YMAXIMUM);
YRANGE:-YMAXIMUM-YMINIMUM;
(* FORM STRING OF WIDTH BLANKS *)
FOR I;-1 TO WIDTH DO

BLANKS[I]:-' ';
(* PLACE X-AXIS MARK IN BASICLINE *)
BASICLINE:-BLANKS;
ZEROPRINT:-ROUND((WIDTH-1)*(0-YMINIMUM)/YRANGE)+1;
IF(ZEROPRINT>-1) AND (ZEROPRINT<-WIDTH) THEN

BASICLINE[ZEROPRINT]
(* LABEL GRAPH *)
WRITELN(' GRAPH OF ',YNAME,' VERSUS ',XNAME);
WRITELN(' MINIMUM OF ',YNAME,YMINIMUM);
WRITELN(' MAXIMUM OF ',YNAME,YMAXIMUM);
(* PREPARE AND PRINT LINES OF GRAPH *)
FOR I;-1 TO N DO

BEGIN
YPRINT:-ROUND((WIDTH-1)*(YlI]-YMINIMUM)/YRANGE)+1;
YLINE;-BASICLINE;
YLINE[YPRINT]
WRITELN(X[I],' YLINE)

END
END;

254 Scientific Calculations

USING THE GRAPH PROCEDURE

We will now give the program that was used to plot the
function of x,

y - x^-x-2

between the values x--2 and x-3. We plot it at intervals of x
that are 0.2 wide. There are 26 points in all. Here is the
program;

$JOB 'MARK NAIRN'
(* PLOT THE FUNCTION Y-X*X-X-2 *)
PROGRAM CURVE (INPUT,OUTPUT);

CONST TABLESIZE-50;
INTERVAL-0.2;
POINTS-26;

TYPE TABLE-ARRAY[1..TABLESIZE] OF REAL;
NAME-PACKED ARRAY[1..10] OF CHAR;

VAR X,Y; TABLE;
I; INTEGER;
XNAME,YNAME: NAME;

(copy GRAPH procedure here)
(* COMPUTE VALUES FOR X AND
BEGIN

FOR I:-1 TO POINTS DO
BEGIN

X[I] ;--2+(l-1)♦INTERVAL;
YlI]:-X[I]*X[I]-X[I]-2

Y ARRAYS *)

END ;
XNAME:-'X
YNAME:-'Y ' ;

GRAPH(X,Y,POINTS,XNAME,YNAME)
END.

The output for this program was shown earlier in this chapter.
You will notice that as the graph crosses the X-axis the vertical

is replaced by an asterisk. It crosses twice, at

X - - 1 .OOOOOE + 00 and at
X - +2.00000E+00

We say that x--1 and x-2 are the roots of the equation

X ^-x-2-0

The function (x -x-2) becomes zero at these values of x. This
graphical method is one way of finding the roots of an equation.
We will loolc later in this chapter at another way of finding
roots that is numerical rather than graphical.

Fitting a Curve to a Set of Points 255

FITTING A CURVE TO A SET OF POINTS

In the last sections we have seen how to compute a set of
points of corresponding X and Y values from a formula and then to
plot a graph of these points. In some scientific experiments we
measure the value of a variable Y as we change some other
variable X in a systematic way. The results are displayed by
plotting X and Y. If there is a theory that relates the values
of X to Y in a formula or equation, then we can see how well the
results fit the theoretical formula.

One way would be to compute the values of Y for each X from
the formula. The measured values could be called Y(experimental)
and the calculated ones Y(theoretical). The differences between
corresponding values

Y(experimental) - Y(theoretical)

are called deviations of experimental from theoretical values.

We have spoken so far as if it were possible to compute the
proper theoretical value that corresponds to each experimental
value. This is the case if the formula has no other variable in
it. Frequently there are other variables in the formula that can
change. For example, here is the formula for V, the velocity of
an object at time T, given that its initial velocity is VINITIAL
and its acceleration is A.

V VINITIAL + A*T

If we measured the velocity of an object that has a uniform
acceleration we could plot a graph between V and T;

VELOCITY

TIME

Theoretically, the graph should be a straight line, but the
experimental points are scattered. It is possible to draw a line
by eye that is placed so that the deviations of points from the
line are small. Since some deviations, V(experimental)-
V(theoretical), are positive and some negative their sum might be
small even though individual deviations were large. To get a
good fit we minimize the sum of the squares of the deviations

256 Scientific Calculations

rather than the sum of the deviations. The squares of the
deviations are always positive. We choose as the best straight
line the one that makes the sum of the squares of the deviations
the least. This is called least-squares fitting of a curve (here
a straight line) to experimental points. This process can be
done very efficiently by a computer. Most computer installations
provide standard procedures for least-squares fitting, so that
scientists do not have to write their own.

Sometimes no theoretical curve is known. We can still fit
our data to an equation. We choose an equation that has a form
resembling our data. If there is no theory we say it is an
empirical fit, meaning that it is an equation based on the
observations.

SOLVING POLYNOMIAL EQUATIONS

The graph that we plotted as an example was of the function

y ■ x^-x-2

This is a polynomial function of x. The places where the graph
crosses the x-axis are the roots of the equation

X ^-x-2-0

This is a second-degree equation since the highest power of the
unknown x is the second power. It is a quadratic equation.
There are general formulas for the roots of a quadratic equation.
For the equation

ax ^ +bx + c"0

the two roots x1 and x2 are given by the formulas

x1"(—b+-v^^ —4ac)/(2a) and

x2-{-b--v/b^-4ac)/(2a)

Most students of mathematics know these formulas. If the
quantity (b -4ac) inside the square root sign is positive, all is
straightforward. If it is negative, then the formula requires us
to find the square root of a negative number, and we say the
roots are complex. This means, in graphical terms, that the
curve does not cross, or touch, the X-axis anywhere. It is
either completely above or completely below the X-axis. There is
no use looking for values of x where the function is zero.

Here is a procedure for finding the roots of a quadratic
equation.

Solving Polynomial Equations 257

(* FIND ROOTS OF A*X*X+B*X+C-0 ♦)
PROCEDURE ROOTS(A,B,C: REAL);

VAR TEST,ROOT 1 ,ROOT2,SQROOT: REAL;

BEGIN
TEST:-B*B-4*A*C;
IF TEST >- 0 THEN

BEGIN
SQROOT:-SQRT(TEST);

ROOT1:“(-B+SQROOT)/(2*A);
ROOT2:»(-B-SQROOT)/(2*A);
WRITELN(' ROOTS AREROOT 1 ,ROOT2)

END
ELSE

WRITELN(' ROOTS ARE COMPLEX')

END;

In this procedure the formulas for finding the roots do not
provide values that are accurate under various circumstances.
For example, if ROOTl is nearly zero because B and SQROOT are
very close in value, a better approximation to it can be obtained

by working out ROOT2 and using the assignment:

ROOTl:-C/(A*ROOT2);

to compute ROOTl. This relationship holds in general so it can

always be used. Can you see why it is true?

For equations that are polynomial in x of degrees higher than
two, the method for finding the roots is not as easy. For an
equation of degree three or four, there is a complicated formula
for the roots. For larger degrees there are no formulas and we
must look for the roots by a numerical method.

The secret of any search is first to be sure that what you
are looking for is in the right area, then to keep narrowing down
the search area. One method of searching for roots corresponds
to the binary search we discussed in Chapter 14. First we find
two values of x for which the function has different signs. Then
we can be sure that, if it is continuous, the graph will cross
the x-axis at least once in the interval between these points.
The next step is to halve the interval and look at the middle.
If there is only one root in the interval, then in the middle the
function will either be zero, in which case it is the root, or it
will have the same sign as one of the two end points. Remember
they have opposite signs. We discard the half of the interval
that is bounded by the middle point and the end with the same
sign and repeat the process. After several steps we will have a
good approximation to the location of the root. We can continue
the process until we are satisfied that the error, or
uncertainty, in our root location is small enough. There is no
point in trying to locate it more accurately than the precision
with which the numbers are stored in the computer. A numerical
analyst could determine the accuracy of the calculated answer.

258 Scientific Calculations

SOLVING LINEAR EQUATIONS

Computers are used to solve sets of linear equations. If we
have two unknowns, we must have two equations to get a solution.
We can solve the set of equations

x-y-10
x+y«6

to get the result x"8, y*-2. To solve the equations we first
eliminate one of the unknowns. From the first equation we get

x-y+10

Substituting into the second eliminates x. It gives

(y+10)+y"6 or 2y«-4 or y«-2

Then substituting back gives

X--2+10 or x»8

This process of elimination can be carried out a step at a time
for more equations in more unknowns. Each step lowers the number
of unknowns by one and the number of equations by one. A
computer program can be written to perform this job, and can be
used to solve a set of linear equations. What we must provide is
the coefficients of the unknowns and the right-hand sides of the

equations. A common method is called the Gauss
elimination method. -

COMPUTING

Another numerical method
understand is the calculation of a
Suppose we have a curve of y“f(
between the curve and the X-axis a
x-Xn.

AREAS

that is relatively easy to
eas by the trapezoidal method.
) and we want to find the area
d between lines at x-XI and

—H
DELTA Xn

Chapter 18 Summary 259

W© will divide the distance between XI and Xn into intervals of
size DELTA. In the drawing w© have shown four intervals. The
area of the first section, thinking of it as a trapezoid, is

(Y1+Y2)*DELTA/2

The total area under the curve is approximated by the sum of all
the trapezoids. The total area of the trapezoids is

(Y1+Y2)*DELTA/2+(Y2+Y3)*DELTA/2+...(Y[n-1]+Yn)♦DELTA/2

If w© factor out DELTA the formula becomes

((Yl+Yn)/2+Y2+Y3+... +Y[n-11)*DELTA

This is half the sum of Y1 and Yn pi
multiplied by the width of the trapezo
smaller, the sum of the areas of the t
closer to the area under the curve. It
approximation. There is, however, a
can be obtained, due to the precision o
is a program segment to compute the ar

an array:

us the sum of the other Ys
ids. As DELTA is mad©
rapezoids comes closer and
is a better and better

limit to the accuracy that
f the REAL numbers. Here
©a if the Ys ar© stored in

SUM:-(Y[1]+Y[Nl)/2;
FOR I:-2 TO N-1 DO

SUM;-SUM+YlI 1 ;
AREA;-SUM*DELTA;

CHAPTER 18 SUMMARY

This chapter has given an introduction to the us© of
computers in scientific calculations. Generally, these
calculations ar© don© using REAL numbers. The scientist needs to
know the accuracy of the final answers. The answers may be

inaccurate because of:

Measurement errors - the original data was collected by
measuring physical quantities, such as length or speed.
These measurements can never be perfect and an estimate
of the measurement error should be made.

Round-off errors by the computer - a given computer stores
RE.AL numbers with a particular precision, typically 6
decimal digits of accuracy. Calculations using REAL
numbers will be no more accurate than the number of
digits of precision provided by the computer. They
could even be less accurate due to the cumulative effect
of round-off. (Note: sometimes the programmer can
choose between "single-precision" REAL, giving typically
6 digits of accuracy and "double-precision" REAL, giving

typically 14 digits accuracy.)

260 Scientific Calculations

Truncation errors in repeated calculations - some
calculations, such as searching for the roots of a
polynomial equation, produce approximations that are
successively closer to the exact answer. When the
repeated calculation stops, we have a truncation error,
which is the difference between the final approximation
and the exact answer (ignoring errors due to measurement
and round-of f) .

The number of digits of accuracy in a particular answer is
called its number of significant figures♦ The scientist needs to
know that the computer produces a particular answer with enough
significant figures for his purposes.

Pascal provides predeclared functions that are useful in
solving scientific or mathematical problems. The function SQRT
takes the square root of a non-negative number. The functions
SIN, COS and ARCTAN operate on or return angles in radians. LN
takes the natural logarithm of a number, and EXP raises e to a
specified power.

This chapter presented the following typical scientific and
mathematical uses of computers.

Evaluating formulas - a computer can produce tables of
numbers, for example tables of navigational figures used
on sailing boats.

Graphing functions - a computer can plot a particular
function; sometimes a special plotter machine is
attached to the computer so it can draw continuous lines
as well as printing characters.

Fitting a curve to a set of points - data points from an
experiment can be read by a program and used to
determine an equation (a curve) that describes the data.

Solving polynomial equations - a polynomial equation such as

x\9X^ +6X-23-0

can be solved by a program that reads the coefficients
(1 , 9 , 6 and -23).

Solving linear equations - a set of equations such as

2X + 9y - 7
10X - 4y - 2

can be solved by a program that reads the coefficients
of the unknowns (2, 9, 10 and -4) and the right sides of
the equations (7 and 2).

Areas under curves - a program can find the area under a
given curve by using the heights of the curve at many
points. Essentially, the program slices the area into

Chapter 18 Exercises 261

narrow strips and adds up the areas of the strips. This
process is sometimes called numerical integration or
quadrature.

CHAPTER 18 EXERCISES

1. One jet plane is flying 1083.7 kilometers per hour; another
jet plane, chasing it from behind, is flying 1297.9 kilometers
per hour. What is the relative speed of the second plane, that
is, how fast is it catching up to the first plane? The speed of
the first plane is known to an accuracy of ±5 km/hr and the speed
of the second is known to an accuracy of ±0.5 km/hr. How
accurately can we calculate the relative speed? How many
significant figures are there in the first plane's speed, the
second plane's speed and the relative speed?

2. Use the graphing procedure given in this chapter to plot the
function SIN(X) for X varying from zero to three in steps of one
tenth.

3. Use the graphing
function X*SIN(X) for

procedure given in this chapter
X varying from 0 to 12 in steps

to plot the
of 0.25.

4. A moon rocket has an instrument that measures the rocket's
acceleration every second and transmits the measurement to an on¬
board minicomputer. A program in the minicomputer estimates the
speed of the rocket, assuming a speed of zero at launch time.
Essentially, this program determines the area under the curve of
acceleration plotted against time. Using the trapezoidal method
described in this chapter, the speed at time Tn will be
approximately

((A1+An)/2+A2+A3+ + A[n-1])* DELTAT

In this case, DELTAT is 1 second and each acceleration is
measured in kilometers per second per second. The formula to
give the speed in kilometers per second n seconds after blast-off
is simply

[A1+An)/2+A2+A3+...+A[n—1]

Write a program that reads in the accelerations and prints out
the speeds after each second. If you are clever you can avoid
recalculating the entire series for each acceleration reading,
and you can avoid using an array.

1

I

0. ■=. -)f

f^Sf: • EriLir^^:

« t s' •
♦ W : * •• •!

1*^

«*. ^ W ;

'^yi ii ; I’Wv.J
> (• *• t.

-* * .* V '
4^-3« <

^V'
4 ^ : r • ■»

■ T,' -., . '.. »..y-.

■I i J i* ■'ifj ^ ^ * ■ A/; ^ t h<. *. n ,, R

|i\- 1 ;l/;<s TV ' /.if' ., , j •
.' :o'

• A. «» * i •' i ^
f r

t»

«

A>‘1; Kifi- <

T . •6»4 s i«.»4'
»'

^ ^ * *f » ‘ »• ’
< •

!•

i -
* fc>-

- • 4 . '44 ; ;,:; * r y -,■. • ^ - .;^ 1 Jr- <• ..

O t . * r '.

)
• ' taajfy:. 4/ftjp ’ iiUs- &.' -

' ' ' '• ^ if §1. ii Ae .
• f* • k* ‘ ' j‘ki. ii:

' ,i vur ' \
« r» -

f
'-*■ • ^ ..

1 • •'•iAcMA*
Ift \.*v# 1.

i .'* • aar- t.
’

11* 1 * ■ *r . •
44J ni tmk VI

» «i « : 1 Hi ’n

-* » .It.'
i ♦».“» u4af>^ I

!^ ♦lit s$#4

« «jtr

* |Um>.

/
>»v ’<4* r.-*i#*a4
* .♦♦ *

ft

. ^

• *. t fsil ,-

* * •• # t iMa :fv|.< |^. iMli

-J

Chapter 19

NUMERICAL METHODS

In the last chapter we outlined some of the important types
of calculations used in scientific and engineering computing. In
any calculations, for example those for evaluating functions such
as the trigonometric functions sin and cos or finding the area
under a curve, the calculation can be carried out to varying
degrees of accuracy. Usually the more calculating you do, the
more accurate the answer you get. But some methods are better
than others; for the same amount of work you get greater
accuracy. We will, for instance, be looking at a way of finding
areas under curves that is usually superior to the trapeziodal
rule described in the last chapter. As well we will show a
general method of solving linear equations and a method for
least-squares fitting of a straight line to a set of experimental
points. But first we will look at an efficient way of evaluating
a polynomial.

EVALUATION OF A POLYNOMIAL

In doing numerical calculations we should be concerned with
getting the best calculation we can for the least cost in terms
of computer time. This is one of the concerns of people who
design what are called numerical methods. They are not just
concerned about getting an answer but about whether the cost of
getting the answer can be decreased.

As an example of how different methods giving apparently the
same result can have different costs, we will look at the
calculation of the value of a polynomial. We will look at a
third-degree polynomial and then generalize the result later for
a polynomial of degree N. A third-degree polynomial has the form

y(X) - A3 + A2 + A1 X + AO

263

264 Numerical Methods

One way of evaluating this is

Y - A3*X*X*X + A2*X*X + A1*X + AO

In this evaluation there are 6 multiplications (count the
asterisks) and 3 additions. For a fourth-degree polynomial there
would be 10 multiplications and 4 additions. For an Nth-degree
polynomial there would be N+(N-1)+(N-2)+...+1-N(N+1)/2

multiplications and N additions.

Now we will look at a different method of evaluating the
third-degree polynomial. It is

Y - ((((A3)*X+A2)*X+A1)*X+A0)

Here there are 3 multiplications and 3 additions. (Just count
the asterisks.) For an Nth-degree polynomial there would be N
multiplications and N additions. This method is called Horner's
rule and is certainly much more efficient, particularly for
polynomials of higher degree.

We will now write a function subprogram that will evaluate a
polynomial of degree N by this method given that the coefficients
of the powers of X namely the As are stored in a one-dimensional
array. Here is a program segment that would work for the third-
degree polynomial of our example.

SUM:-A[3];
FOR I:-2 DOWNTO 0 DO

SUM:-SUM*X+A[I];

If we extend this now to work for an Nth degree polynomial we
would write

SUM:-A[N];
FOR I:-N-1 DOWNTO 0 DO

SUM:-SUM*X+AlI];

The complete function subprogram would be

(♦ FUNCTION TO EVALUATE POLYNOMIAL OF DEGREE N *)
FUNCTION POLY(A:ARRAYTYPE; X:REAL: N:INTEGER): REAL;

VAR I: INTEGER;
SUM:-REAL;

BEGIN
SUM:-A[N];
FOR I:-N-1 DOWNTO 0 DO

SUM: -SUM’t'X+Af I] ;
POLY:-SUM

END;

In the main program the type ARRAYTYPE could be defined as

TYPE ARRAYTYPE-ARRAY[0..10] OF REAL;

L OSS o f Sign/ fican t Figures 265

The value of N could not be larger than
up to and including 10.

10 but could be any value

ROUND-OFF ERRORS

Since
string of
called a
inexact.
represented
four digits

a real number is represented in a
bits an error is usually introduced.
round-off error. The last bit in

In decimal notation if the fraction 0
by a string of decimal digits of

will be either .1327 or .1328. The

computer
This

the st
1 327^62
length
string

be chopped off after the 4th digit, which is called
chopping, or 5 may be added to the 5th digit and the
chopped to 4 digits. This latter form of round off
somewhat better and is the method that you usually ar
of if you ask that a number be rounded off.

by a finite
error is

ring may be
is to be
4 then the
may simply

rounding by
sum then

is probably
e thinking

As numbers are combined in the arithmetic operations of
addition, subtraction, multiplication and division, the round-off
error may increase. We say that a further error is generated.
As operations continue, the generated error may grow and is said
to be a propagated error.

In adding or subtracting two numbers the error in the sum, or
difference is equal to the sum of the errors in the two numbers.
Suppose for instance that the number 0.132762 is represented as
the 4-digit string 0.1328. The error in this representation due
to rounding off is 0.000038. If the number 0.521689 is
represented as 0.5217 the error is 0.000011. The sum of the
numbers will be 0.6545 as compared with the result of adding the
two 6-digit representations which gives 0.654451. The error in
the sum is 0.000049 which is the sum of 0.000038 and 0.000011.

In multiplication the relative (or percentage) error
introduced in the product is equal to the sum of the relative (or
percentage) errors of the two factors. In division the relative
error of the quotient is the difference between the relative
errors of the dividend and divisor. In any event all arithmetic
operations serve to propagate errors due to rounding.

We found that Horner's rule was more efficient for evaluating
polynomials than the straightforward method because there were
fewer multiplications. Now we can see that it is also more
accurate since the propagation of round-off error is less when
there are fewer arithmetic operations. This is why we can say
that it is a better method; it is more accurate and costs less.

LOSS OF SIGNIFICANT FIGURES

We have seen that arithmetic operations
these cause the rounding due to the finite
real numbers in a computer to grow larger.

result in errors and
representations of

The number of digits

266 Numerical Methods

in our final result that are significant gradually decreases as
errors are propagated.

There are more drastic ways of losing significant figures.
One place where this occurs is in the situation where two nearly
equal numbers are subtracted. When 0.3572 is subtracted from
0.3581 the answer is 0.0009 which is normalized to 0.9???E-03.
The digits that are written as question marks could be anything;
only the 9 is significant. We had 4 significant figures in each
of the original numbers and now we have only 1 significant figure
in the difference. One way to cope with this loss of precision
is to avoid calculations of this sort. Often by regrouping or
resequencing operations the offending subtraction can be
eliminated. If it is not possible then it may be necessary to
work to greater precision, say double precision, during the part
of a calculation where this can occur. Loss of significant
figures can also occur when divisors are small or multipliers
large.

EVALUATION OF INFINITE SERIES

Many mathematical functions can be represented by an infinite
series of terms to be added. For example,

exp(x) ■ 1 + (x/1 1) + (X V2 !) + (X V3 I) + . . .

sin(X) ■

cos(X) ■

log(1+x)

(x/1 I)-(x /3 I) + (x V5 !)-

1-(x^/21) + (x''/4I)-. . .

(x/1)-(x^/2) + (xV3)-. . .

The series for sin and cos are for angles x in radians. The
series for log(1+x) is valid only for values of x whose
magnitudes are less than 1.

If we evaluate the infinite series for say sin(x) for a value
of x"Pl/4 we would get terms that alternately are positive and
negative and decrease in magnitude as successive terms are
calculated. Here is a program that prints the value of the sum
of the sine series up to a given term as well as the value of the
latest term added for eight terms.

Evaluation of Infinite Series 267

$JOB 'MARIA KLAWE'
(* COMPUTE SERIES FOR SIN(X) TERM BY TERM *)
PROGRAM SINSERIES(INPUT,OUTPUT)r

CONST PI-3. 1 4 1 593 ;
VAR X,SQRX,SINE,TERM; REAL;

I; INTEGER;
BEGIN

X;-Pl/4;
SQRX;-X*X;
WRITELN(' SIN(X) TERM');
TERM;-X;
SINE;-TERM;
FOR I;-1 TO 8 DO

BEGIN
WRITELN(SINE,TERM);
TERM;--1*(TERM*SQRX)/(2*I*(2*I+1));
SINE;-SINE+TERM

END;

WRITELNC' VALUE OF SINE USING PREDECLARED FUNCTION SIN IS',
SIN(Pl/4))

END .

The output for this

SIN(X)
7.853980E-0 1
7.046525E-01
7 . 07 1 429E-01
7.071063E-01
7 . 07 1 066E-01
7.071066E-01
7 . 072066E-01
7 = 07 1 066E-0 1

VALUE OF SINE USING

program is

TERM
7.853980E-0 1

~8.074544E-02
2.490392E-03

-3.657614E-05
3.133609E-07

- 1.757242E-09
6.948429E-12

-2.041018E-14
PREDECLARED FUNCTION SIN IS 7.072069E-01

You can
from the
the one term
becomes smaller

see that the terms become progressively smaller right
start. This is because x is less than 1. The ratio of

to the next term is xV(2i(2i +1)) . This ratio
as i becomes larger. The terms are decreasing

faster and faster. Terms after the 5th do not make any
difference. This series for sin(x) can be used even when x is
greater than 1. Here is the output if we run the previous
program again with the statement X;-Pl/2 instead of X;-Pl/4 and
print the value of sin(Pl/2) which is 1.

SIN(X) TERM
1.570796E + 0 1 1.570796E+
9.248325E + 00 -6.459635E+

0 . 1 004524E + 01 7.969242E-
9.998425E + 00 -4.681736E-
1.000003E + 0 1 1 .604404E-
9.999993E + 00 -3.598822E-
9.999993E + 00 5.692136E-
9.999993E+00 -6.687983E-

VALUE OF SINE USING PREDECLARED

00
0 1
02
03
04
06
08
10

FUNCTIONS SIN IS 1.000000E+00

268 Numerical Methods

This time the terms do not decrease as rapidly; but they are not
affecting the result after the 6th term. The accuracy obtained
from the evaluation of a fixed number of terms depends on the

value of the parameter x.

If the series is stopped after 3 terms the value of sine
differs from the true value of sin(Pl/2) which is 0.100000E01 by
0.0004524E01 which is 4/10 of 1 percent. We say that this error
is partly due to truncating the series. If truncation occurs
after 4 terms the error is 0.0001575E01 which is 1/10 of 1
percent. The more terms we calculate, the smaller is the
truncation error. By taking sufficient terms we can make the
truncation error as small as we want.

One way of deciding how many terms of a series are enough is
to stop when the absolute value of the most recent term is less
than a certain amount. The amount we usually choose is such that
it will not change the value of the sum in a noticeable way. It
is useless to evaluate more terms because they do not matter.

Even when we have evaluated enough terms so that the
contribution of the last term is insignificant, there still
remain errors due to round off. In our example, the round-off
error would be present even in the first term of the series; as
each term is added another round off occurs. These errors may
tend to cancel each other; sometimes the number is rounded up,
sometimes down. It is possible that all errors are in the same
direction so that the total possible error introduced in this way
grows larger with the number of terms. We must expect the worst.
The round-off error in the sine of Pl/4 seems to be 0.0000003,
that in sine of Pl/2 seems to be 0.0000007. In each case the
last figure printed is dubious.

One way of avoiding the accumulation of round-off errors is
to work in double precision. In double precision each number is
represented by a string of bits that is twice as long as in
single precision. The round-off error will then accumulate in
the least significant bits of the double precision number. When
the result is finally reduced to single precision, a single round
off occurs.

A relationship between the functions sine and cosine may be
used to improve the accuracy of the result for a given number of
terms in the series. This relationship is

SIN(X)-COS((Pl/2)-X)

This means that for angles greater than Pl/4 but less than Pl/2
we can compute the sine by using the series for cosine with the
argument ((Pl/2)-X). This will be equal to or less than Pl/4 and
comparable accuracy can be obtained using the same number of
terms in the series.

When a fixed number of terms has been decided on, say six,
the evaluation of the series becomes the evaluation of a
polynomial. We can take advantage of the efficiencies of

Root Finding 269

Horner s method. In the series for sine
power of X is present so the polynomial
rather than X. For example, the series for
be written as

and cosine not
is really like one

sine to 5

every
in X

terms can

sin(X)-((((xVg !)-(t/7 !))X +(1/5I))X +1)X

The coefficients (1/9!), (1/71), and (1/5!) can all be evaluated
once and for all and stored as constants in the program.

All
related
to Pl/4

values of angles
to either the sin

greater than Pl/2 must be reduced to be
or cos series for X less than or equal

ROOT FINDING

In the last chapter we looked at one method for finding the
value of X where a polynomial in X has a zero value. This same
method applies to any function of one variable, say f(X). If
there are two values, say XI and X2, of X at which f(X) has
opposite signs then, provided the function is continuous, there
must be at least one point in between these values where the
function has a zero value. We described a search technique that
halved the interval between the given values of X and determined
in which half the zero of the function lay. This process can
then be repeated in a manner similar to a binary search.

This interval-halving method can be improved upon and
numerous other methods for finding zeros, or roots, of a function
of one variable have been devised. The purpose of these methods
is to provide a faster way of homing in on a root once it has
been located between two values of X.

A technique called the secant method uses, instead of the
mid-point, the point at which a line drawn between the point
(X1,f(X1)) and (X2,f(X2)) cuts the X-axis. This will be at a
point X given by solving the equation

f(X2)/(X2-X)-f(XI)/(X-Xl)

or X - (f(XI)X2+f(X2)X1)/(f(X2)+f(XI))

If you have studied analytical geometry you can see this from the
diagram.

270 Numerical Methods

This process is repeated using the point X as a replacement
for either XI or X2. The choice depends on which gives a value
to the function opposite to the value at X. As the iteration
proceeds the interval is always being narrowed down.

Both the interval-halving method and the secant method will
converge on the root. The rate of the convergence depends on the
particular function whose zero is being sought. The rate of
convergence can sometimes be improved at the cost of the
guarantee of convergence. In the secant method, instead of using
one of the end points all the time, two intermediate points can
be used. Of course, there may not be a zero between these points
but the search interval is much smaller.

A method called the Newton-Raphson method is useful for
simple functions, like polynomials, whose slopes can be computed
using calculus. The iteration formula for approximating the root
i s

X(N+1) - XN-f(XN)/S(XN)

the approximation 1 s where X(N+1)
iteration, XN is
function at XN,
function at XN.

and S(XN) is the

the root at the (N+1)th
(XN) i s the value of the
alue of the slope of the

if , for example,

f(X) - 3X +2X+1 then

S(X) - 6X+2

S(X) is the derivative of f(X).

The Newton-Raphson method has very rapid convergence, but
convergence is not always guaranteed.

PROCEDURE FOR ROOT FINDING

the
the
The

In

We will give a program for a procedure which uses
interval-halving method. It is perhaps slow, but safe. For
function evaluations it will call on a function FUNC.
parameter EPSILON stands for the Greek letter epsilon,
mathematics, we use epsilon to stand for the small difference
between an approximation and a true value. We will use as a
stopping condition the fact that two successive approximations to
the root differ from each other by less than EPSILON. When you
use the procedure SOLVE you must decide what accuracy you want.
Of course there is no use asking for greater accuracy than is
permitted by the finite representation of the numbers.

Numerical Integration 271

(* FIND ROOTS OF FUNC(X)-0 BY INTERVAL HALVING *)
PROCEDURE SOLVE(LEFT,RIGHT,EPSILON:REAL;VAR ROOT:REAL);

VAR XI,X2:REAL;
BEGIN

XI:-LEFT;
X2:-RIGHT;
WHILE (X2-X1)>EPSILON DO

BEGIN
ROOT:-(X1+X2)/2;
IF FUNC(X1)♦FUNC(ROOT)>0 THEN

XI:-ROOT
ELSE

X2:-ROOT
END

END ;

We will now use this procedure to find the zero of

f(X)-X ^-x-2

that is between x-0 and x-3 to an accuracy of 0.00005E00.

$JOB 'DORON COHEN'
(* FIND ONE ROOT OF F(X)-X*X-X-2 *)
PROGRAM ZERO(INPUT,OUTPUT);

VAR RESULT:REAL;
FUNCTION FUNC(X:REAL):REAL;

BEGIN
FUNC:-(X-1)*X-2;

END;
(include declaration of SOLVE here)
BEGIN

SOLVE(0,3,5E-5,RESULT);
WRITELN(' ZERO OF QUADRATIC IS',RESULT)

END.

The output for this program is

ZERO OF QUADRATIC IS 2.000015E+00.

Notice that the polynomial is being evaluated by Horner's method.
We do not need to use this kind of method of root finding for a
quadratic but it illustrates the method in a case where we can
compute the correct answer which is

2 . OOOOOOEOO

NUMERICAL INTEGRATION

In calculus, we find that the area under a curve can be
calculated by evaluating the definite integral of the function
that represents the curve between the two limiting values of the
independent variable. Not every function can be integrated
analytically but a numerical approximation can be obtained for

272 Numerical Methods

any continuous function. In the 1
trapezoidal rule for calculating a
is evaluated at uniformly spaced i
values and the function values
accuracy of the result improves as
and more function evaluations made

ast chapter we
reas under curves
ntervals between
are used to find
smaller interval

presented the
; the function
the limiting

the area. The
s are chosen

For the same number of function evaluations it is possible to
have an integration formula that combines the values to give a
better approximation to the area.

One formula which is usually better than the trapezoidal
formula is called Simpson's rule. The trapezoidal formula
assumes that each little slice of the area has the shape of a
trapezoid; Simpson's rule assumes that the curved boundary of two
adjacent slices has the shape of a parabola (a second-degree
polynomial). It uses the area under such a parabola that can be
found using calculus to give a way of finding the area under the
curve. The area must be divided into an even number of slices.
The area of any pair of slices is the slice width DELTA,
multiplied by one-third of the sum of the values of the function
at the outside together with four times the value in the middle.
If the complete area is divided into 2 pairs of slices then the
area is

DELTA*(f(XI)+4*f(x2)+2*f(X3)+4*f(X4)+f(X5))/3

You can see how to extend this for more pairs of slices.

We will write a program to compare the accuracy of the result
obtained with the same number of function evaluations (slices)
using the trapezoidal
the area for a simple
the exact area for
the curve

rule and Simpson's rule. We will calculate
curve so that a calculus result can give
comparison. We will compute the area under

f(X)-sin(X)

between the values of X"0 and PI. From calculus we know the
answer should be 2.0000000. We will use 6 slices so that DELTA
will be Pl/6.

Linear Equations Using Arrays 273

$JOB 'COROT REASON'
(* COMPARE SIMPSON'S AND TRAPEZOIDAL RULE *)
PROGRAM INTEGRATE(INPUT,OUTPUT);

CONST PI»3.141592;
VAR DELTA,TRAP,SIMP,ODD,EVEN,MIDDLE: REAL;

I: INTEGER;
F: ARRAY[1..7] OF REAL;

BEGIN
DELTA:-Pl/6;
(* EVALUATE SIN(X)AT 7 VALUES OF X *)
FOR I:-0 TO 6 DO

F [I-f 1] : -SIN(I*DELTA) ;
(* COMPUTE AREA BY TRAPEZOIDAL RULE *)
MIDDLE:-F[2]+F[3]+F[4]+F[5]+F[6];
TRAP:-DELTA*(F[1]+2*MIDDLE+F[7])/2;
(* COMPUTE AREA BY SIMPSON'S RULE *)
EVEN:-F[2]+F[4]+F[6];
ODD:-F[3]+F[5];
SIMP:-DELTA*(F[1]+4*EVEN+2*ODD+F[7])/3;
WRITELN(' TRAPEZOIDAL METHOD GIVES',TRAP);
WRITELN(' SIMPSONS METHOD GIVES',SIMP)

END.

Here is the output

TRAPEZOIDAL METHOD GIVES 1.954096E+00
SIMPSONS METHOD GIVES 2.000861E+00

You can see that the error in the trapezoidal method is 0.04590,
that in Simpson's rule is 0.00086. This shows that Simpson's
rule is a superior one here, the error is smaller.

LINEAR EQUATIONS USING ARRAYS

We have looked at the problem of solving two linear equations
in two unknowns. We do not use computers to solve such simple
systems. But computers are useful when we have many equations in
many unknowns. In handling these problems we store the
coefficients of the unknowns in an array. If we had four
equations in four unknowns the equations might be written as

A[1,11X1+A[1,2]X2+A[1,31X3+A[1,41X4-B1

Ai2,1]X1+A[2,21X2+AI2,3]X3+A[2,41X4-B2

A[3,1]X1+A[3,2]X2+A[3,3]X3+A[3,41X4-B3

A[4,1]X1+A[4,2]X2+A[4,3]X3+A[4,4]X4-B4

where A is a two-dimensional array of the coefficients. We can
write the Bs, the right-hand sides of these equations, as part of
the A array by letting B1-A[1,5l, B2-A[2,5] and so on. To solve
the equations, we must reduce these equations in turn to three
equations in three unknowns, two equations in two unknowns, and

274 Numerical Methods

then one equation in one unknown. This method eliminates all the
unknowns except one. Then by substituting back you can find the
value of all unknowns. If the array of coefficients was of the
form

A[1,11 A[1,2] A[1,3] A[1,4] A[1,51
0 A[2,2] A[2,3] A[2,4] A[2,5]
0 0 A[3,3]A[3,4]A[3,5]
0 0 0 A[4,4]A[4,5]

then we could see from the last line that X4-A[4,5]/A[4,4]. Then
using this we could substitute back into the equation represented
by the second last line namely

A[3,3]X3+A[3,4]X4-A[3,5]

and solve for X3, and so on to get X2 and XI.

What we have to do is move from the original array of
coefficients to the one with all the zeros in the lower left
corner. We do this by dividing each element of the first row by
A[1,1] and storing it back in the same location. This makes the
new value of A[1,1] a 1. Next multiply this row by A[2,1] and
subtract it from each element of row two, storing the result back
in the same location. The new value of A[2,1] will be zero. The
process will eventually result in an array with zeros in the
lower left.

Certain problems of loss of precision can arise if the
element that is currently to be reduced to 1 is small. This
element, referred to as the pivot element, should be as large as
possible. Various ways of rearranging the array can help prevent
difficulties but trouble is always possible. This sort of
problem provides great interest to numerical analysts.

LEAST SQUARES APPROXIMATION

Very often in scientific experiments, measurements of a
quantity Y are made at various values of an independent variable
X. It may be known from theory that the relationship between Y
and X is a linear one, for example

Y-AX+B

The various corresponding values of X and Y can be plotted on a
graph; there would be a number of points, say N. A straight line
drawn through any two of these points would not pass exactly
through the others. We want to choose the values of the
constants A and B so that they define a straight line in such a
way that the sum of the squares of deviations of the actual
points from the straight line is a minimum, that is, the sum of
squares is least. For the Ith point, say at (XI,Yl), the
deviation squared is

Mathematical Software 275

(YI-(A*XI+B))^

We want the minimum so we use calculus and set the derivatives
with respect to the variables equal to zero. We can
differentiate a sum of squares of this type partially with
respect to A and B, the values that can be varied, and set the
derivatives equal to zero. This gives two equations. One is the
sum of N terms of the form

YI-(A*XI+B)

set equal to zero. The value of I goes from 1 to N. The other
is the sum of N terms of the form

(YI-(A*XI+B))*XI

set equal to zero. These two equations can be written as two
equations in two unknowns, A and B. These ar e

C1*A + C2*B - C3

C4*A + C5*B - C6

where Cl is the sum of values XI with I going from 1 to N. C2 is
N and C3 is the sum of values YI with I going from 1 to N. C4 is
the sum of XI*XI from 1 to N, C5 the sum of XI from , 1 to N, and
C6 the sum of XI*YI from 1 to N. The solution to the two
equations can easily be found once they are formed.

This same technique can be used for points that in theory lie
on a higher degree curve than a straight line but the calculation
is more complex.

MATHEMATICAL SOFTWARE

We have been describing a few of the simpler numerical
methods used in scientific calculations. Over the years these
methods have been changed and made more reliable, more efficient
and more accurate. Nowadays we usually rely on a packaged
program for carrying out this type of calculation. We call the
program packages mathematical software, to distinguish them from
the programs that operate the system or compile programs. These
latter are called systems software and compilers respectively.

Mathematical software packages exist for almost every
standard numerical calculation. All that you must do is to find
out how to call them in your program, and what their limitations
are. Every piece of software should be documented so that you do
not need to read it to be able to use it. You must know what
each input parameter of the subprogram is and what range of
values is permitted. You must know also how the output is stored
so that you can use it.

276 Numerical Methods

Frequently software packages are stor
memory of the computer and may be included i
using special control cards. In any event if
a package exists this can be included with yo
position appropriate to a subprogram.

One of the great things about science is
work of others and using subprograms prepared
scientific practice. Of course these subpr
highest standards.

ed in the second ary
n your pr ogr am by

a deck of cards for
ur own de ck in a

tha t we bui Id on the
by others is good

ograms must meet the

CHAPTER 19 SUMMARY

In this chapter we have been examining numerical methods for
evaluating polynomials and infinite series, calculating areas
under curves, solving systems of linear equations and obtaining
least squares approximations. We were concerned particularly
with certain properties of the methods.

Efficiency of a method - the amount of work, as measured in
number of basic arithmetic operations required to obtain a
certain numerical result. Horner's rule for polynomial
evaluation is more efficient than the straightforward method.
It is more efficient because it requires fewer
multiplications.

Horner's
that

rule - a method for computing the value of a polynomial
is efficient. The polynomial

Y-5X^+2X+3

is evaluated by the Pascal
Horner ' s rule

statement which represents

Y (5*X+2)*X+3

rather than

Y 5*X*X+2>*‘X+3

Round-off error - error in real numbers introduced because a
computer represents the number by a finite ^string of bits.
When real numbers are added or subtracted the round-off error
of the sum or difference is the sum of the round-off errors
of the two individual numbers. In multiplications the
relative errors add.

Generated error - round-off errors produced due to arithmetic
operations. The fewer the arithmetic operations the smaller
the round-off error generated.

Propagated error - generated round-off errors that
calculations proceed.

grow as

Chapter 19 Summary 277

Significant digi
number that a
a final dec
unity. Digit
in an answer.

ts - digits in the representation of a real
re not in error. Numbers are often quoted with
imal digit that may be in error by as much as
s that are not significant should not be quoted

Loss of significant digits - this may occur as the result of
subtraction of nearly equal numbers, or division by very
small numbers, or multiplication by very large numbers.

Infinite series - many mathematical functions such as sin, cos,
exp and log can be written as a sum of an infinite series of
terms. These series may be used to evaluate the functions.
Because the terms in the series eventually decrease in
magnitude a good approximation can be obtained by stopping
the addition after a certain number of terms.

Convergence of series - the way in which the terms of an infinite
series become smaller and smaller.

Rate of convergence
terms of an inf
xV(2i(2i+1)) . I
less than one. I
initially get 1
cannot converge i

- the ratio of the magnitude of two adjacent
inite series. For sin(X) the ratio is
f X is less than 1 then this ratio is always
f X is greater than 1 the terms might
arger but eventually get smaller. A series
f the term ratio never becomes less than 1.

Double precision - keeping twice the normal number of bits to
represent a number in the computer. Calculations carried out
to double precision maintain a larger number of significant
figures.

Interval-halving method - for finding a root of an equation
f(X)"0 by a method similar to binary search. The method is
guaranteed to converge on a root since the root is always
kept between the end points of the interval and the interval
is constantly decreasing in size.

sometimes has better convergence
ving for finding a root of an

Secant method
properties
equation.

Newton-Raphson
derivative
guaranteed.

a method that
than interval hal

- a method for f
can be computed.

inding a zero of
Convergence is

a function whose
rapid but not

Stopping criterion - the size of error that is to be tolerated in
a result due to truncating such as in evaluating an infinite
series term by term or iterating to find a root.

Numerical integration - approximation of the value of the
definite integral which represents the area under a curve
between two limits.

Simpson's rule - for numerical integration, assumes each pair of
slices of area under a curve is bounded by a parabola. The

278 Numerical Methods

trapezoidal method assumes each slice is bounded by a
straight line. Simpson's rule often gives greater accuracy
for the same number of slices (function evaluations).

Array of coefficients - for linear equations. This is
manipulated so as to be transformed into an array that is
triangular, that is, has zero elements on the lower left of
the diagonal. This is accomplished by operations such as
multiplying a row by a constant and subtracting one row from
another. Neither of these operations alters the values of
the unknowns.

Back substitution - evaluating the unknown once the transformed
set of linear equations can be represented by a triangular
array.

Least squares approximation - finding an equation to represent
experimental information so that the sum of the squares of
the deviations is a minimum. We investigated the case of
fitting a straight line to a set of experimental points.

Mathematical software - prefabricated subprograms embodying good
numerical methods for getting standard results. The software
should be documented to alert the user to the accuracy to be
expected, the cost of the result, and any limitations that
must be respected.

CHAPTER 19 EXERCISES

1. Write a function subprogram that will give the
angle whose value in radians is between 0 and Pl/2.
series for sine for angles between 0 and Pl/4 and
between Pl/4 and Pl/2. Use the same number of terms

sine of an
Use the

for cosine
in each

series. Test your program and compare the results with those
obtained by using the predeclared function SIN. Try varying the
number of terms in the series.

2. Compute the value of exp(1)
value s a s each term

3. U se the predec la
this fun ction for X
the fun ction for
progr am for graph pi

4 . U se the inte r V

equat ion

2X-tan(X) -0

given th at there i s

using the
maximum of

series.
8 terms.

Find the

going from -10. to
this range. You
otting on the printer.

+10. Sketch the graph of
might think of using the

subroutine to find a root of the

5. Use Newton's method of finding roots to find a root of the
polynomial

Chapter 19 Exercises 279

x^+ex^-i-o

6. Use Simpson's rule to find the area under the curve

Y-X^-2X-1

from X-0 to 3. Does it matter how many slices you have? Test
this.

7. Write a procedure that keeps doubling the number of slices in
an area calculation using Simpson's rule until two successive
results for the area under a curve agree to within an accuracy
EPSILON. Make sure you do not have to reevaluate the function at
places already computed.

8. Compare Simpson's rule and the trapezoidal rule for finding
areas under a curve for Y-exp(X) between X-0 and X-1. Do you
know the answer from calculus?

9. Write a procedure that will solve a set of N equations in N
unknowns. Do not include any form of pivoting. Would you expect
this to be a good piece of mathematical software?

10. Write a procedure that will solve two linear equations in two
unknowns. Do you encounter any problems about loss of accuracy
with such a small system of equations? What happens when there
is no solution, for example, if the two equations represent
parallel lines?

11. Write a procedure that accepts two arrays X and Y of N values
that represent N points and prints out the equation of the
straight line that gives a minimum value to the sum of the square
of the deviations of the points from the straight line.

r
'-I#

f"'

%

Vy ■.#

'4 I

^ «
4 i

0

fL

kk'’.' ‘ . -r
* »• “ I ^ .

ai

« *v

••.^" :i- r*#--3
I ♦ * . ‘ ♦ *'■

. . . * • ■»^’ i*;!• '^ t ..

.. s r-f ■' r- * .«

rri: ■’* *

p3*». ;<f

?W‘ '
nr-t^ H-
■ ‘ I. *' ■ 1 e

:: ' ■

» 4

*4#
r«* It Its dl ii‘ ?i\» * ♦iAfllJi

I

• .♦

5.>. - • jij 1.: ? I-Kv; i- ,

'*1 1 • »: I 4
^ l-frf " -•» I .:»*sil

ii-. ";' l^ilf ^1 <P

^^. -< iN» .# I ‘‘M • - .

*' ' . _ _

^■-•% . t:\'. ^ v
*

r . Aij «

L4^*i'. .>« itrcv^ir*.

• 1<}S .l!«K«9i(L:. I *l

. •*<9C4 •vi^iNMf^ •a*?-s*yrAti?

'iJ&W.** ^■W illlllVl*^^****"' '•«**4i*
»» * * «)

J : 1*^4 »r ♦

«fc t4t‘ m . IV ►
«4. • cA 4 * r-1

.,JSf •
r«*

M ‘ r ’*
^ tit t«<i

. t • I* ^ *. t

. ; 'IS
;*•<

_i*»

^ i « ‘ ' -ij

f >4|.

Chapter 20
PROGRAMMING IN
OTHER LANGUAGES

In this book we have been presenting structured programming
in the high-level language Pascal. Pascal was introduced in 1971
by Niklaus Wirth. It has influenced the design of a number of
other high-level languages such as Euclid. It grew out of the
development of Algol-W which was an extension of Algol 60. Algol
60 was a language designed with the hope that it might be a
universal language for scientific computing. Cobol was a
language designed for business data processing. Cobol stands for
common Business Oriented Language; it is used very widely in
business applications of computers. As it stated in the official
Cobol report "Cobol is an industry language and is not the
property of any company or group of companies; or of any
organization or group of organizations".

PL/1, or Programming Language One, was designed in an attempt
to combine the capabilities of Algol, Fortran and Cobol.

Fortran, perhaps the earliest of the common high-level
languages, has had many improvements made in it since it was
presented in 1956. Some of these improvements were incorporated
in Standard Fortran, or Fortran 66, by the American National
Standards Institute. And now further improvements are contained
in Fortran 77.

In this chapter we will be looking at these different
languages so you can see that, once you have learned to program
in one, it would not be difficult to program in another. You
will have learned the fundamentals of programming and can quickly
adapt to a new language.

281

282 Programming in Other Languages

PL/1 and fortran 77

We
Fortran
Pascal
an idea
example

cannot present very much of the syntax
77 languages in this book but we will comp
by way of a single example program. Thi
of the similarities between the three 1
has been chosen to demonstrate the two

the counted loop and the conditional loop. A s
cards is to be read, each containing, in the
right-justified, the cost in cents of a certain
blank column and, in the next two columns, the ex
in years of the item. The program reads these car
end-of-file card with a lifetime of 99 years i

each card it calculates and prints a table, with
label, giving the balance at the end of each ye
after the depreciation has been subtracted. This
lifetime of the item. The balance in the last yea
to zero, if it is not precisely zero.

of the PL/1 or
are them with
s will give you
anguages. The
kinds of loops:
eries of data
first 8 columns
item, then a

pected lifetime
ds, unti1 the
s reached. For
an appropriate
ar for the item
is done for the
r will be close

Thus for input data

500.00 5

the computer should print

COST-
1
2
3
4

5

400
300
200
100

0

500
00
00
00
00
00

00 LIFE-

The three programs have their
reference to them. Some lines

lines numbered so
are left blank

we can make
so that

corresponding parts of the program are on the same line number

PL/I and Fortran 77 283

FORTRAN 77

1
9

$JOB FORTRAN 77
A
3 C THIS IS A COMMENT
4 INTEGER LIFE,YEAR
5 REAL COST,DEPREC,BALNCE
6 READ 50,COST,LIFE
7 50 FORMAT(F8.2,IX,12)
8 80 IF(LIFE.EQ.99)GO TO 250
9 PRINT 90,'COST- ',COST,'

10 90 FORMAT{' ',A6,F8.2,A7,12
1 1 deprec-cost/life
12 BALNCE-COST
1 3 DO 150 YEAR-1,LIFE
1 4 BALNCE-BALNCE-DEPREC
1 5 PRINT 100,YEAR,BALNCE
1 6 100 FORMAT(' ',12,F8.2)
1 7 150 CONTINUE
18 READ 200,COST,LIFE
19 200 FORMAT(F8.2,IX,12)
20 GO TO 80
2 1 250 CONTINUE
22 STOP
23 END
24 $ENTRY

500.00 5
480.00 3

0.00 99

',LIFE

We will compare the three programs line by line. Line 1 is
the job control card which is different in the way the job
identification is given. As well there may be a different
character used immediately after the $JOB to indicate different
compilers. In line 2 we have the heading that is necessary for
all PL/1 and Pascal programs. EXAMPLE is a name the programmer
has chosen, but the rest is all standard. A Fortran program
requires no such introductory line. Line 3 shows how comments
are handled. Lines 4 and 5 give the declarations of variables.
Fortran uses the keywords INTEGER and REAL, just like Pascal for
what PL/1 calls FIXED and FLOAT. By this time you will have
noticed that PL/1 statements are terminated by a semicolon. This
is so they could all be run together on the same card. Pascal
statements are separated by a semicolon. Fortran must be placed
properly on cards or the compiler would be very confused since it
has no punctuation to end statements.

Both PL/1 and Fortran 77 have more formatting control for the
input statement than does Pascal. The formatted input statement
in PL/1 is GET EDIT. In PL/1 the list of format items is in
parentheses after the list of output items and is in the same
statement. In Fortran, a separate FORMAT line gives the format
items. We have split the single PL/1 statement into two lines to
show the parallelism. In Pascal we have simply READLN.

Here is the program written in Pascal.

284 Programming in Other Languages

PASCAL

1 $JOB 'PASCAL'

2 PROGRAM EXAMPLE(INPUT,OUTPUT);

3 i* THIS IS A COMMENT *)

4 VAR LIFE,YEAR:INTEGER;

5 COST,DEPREC,BALNCE:REAL;

6 BEGIN

7 READLN(COST,LIFE);

8 WHILE LIFE099 DO

9 BEGIN

10 WRITELN(' COST- ',COST:8:2,' LIFE-

11 DEPREC:-COST/LIFE;

1 2 BALNCE:-COST;

1 3 FOR YEAR:-1 TO LIFE DO

BEGIN

14 BALNCE:-BALNCE-DEPREC;

1 5 WRITELN(YEAR,BALNCE:8:2)

1 6

1 7 END ;

18 READLN(COST,LIFE)

19

20 END

2 1

22 END.

$DATA

500.00 5

480.00 3

0.00 99

' , LIFE:2) ;

PL/I and Fortran 77 285

PL/ 1

1
2
3

4

5

6
7

8
9

10
1 1
12
13

14

1 5

16

1 7

18

19

20
2 1
22
23

24

$JOB ID-'PL/1'

EXAMPLE:PROCEDURE OPTIONS(MAIN)f

/* THIS IS A COMMENT */

DECLARE{LIFE,YEAR)FIXED;

DECLARE(COST,DEPREC,BALNCE)FLOAT;

GET EDIT(COST,LIFE)

(F(8,2),X(1),F(2));

DO WHILE (LIFE_,-99) ?

PUT SKIP EDIT('COST- ',COST,' LIFE- ',LIFE)

(A(6),F(8,2),A(7),F(2));

DEPREC-COST/LIFE;

BALNCE-COST;

DO YEAR-1 TO LIFE;

BALNCE-BALNCE-DEPREC;

PUT SKIP EDIT(YEAR,BALNCE)

(F(2) ,F(8,2)) ;

END;

GET EDIT(COST,LIFE)

(F(8,2),X(1),F(2));

END ;

END;

$DATA

(same data as before)

In line 8 we have the beginning o
Fortran the termination condition is g
the continuation condition is given a
condition is the opposite of the other
that we would write in Fortran as .
and in Pascal we use the predeclared
write NOT EOF.

f the conditional loop. In
iven after the IF. In PL/1
fter the DO WHILE. The one
. The relational operator
NE. , we write in PL/1 as _^-
Boolean function EOF and

In the output labelling
does the same thing as the '
starts the printing on a
instead of WRITE does this.

in lines 9 and
in the FORMAT

new line. In

10, the SKIP
of Fortran,
Pascal using

in PL/1
namely

WRITELN

Pa
i s
In
i s
ex
al
a
Fo

In line 13 a counted loop begins. Notice that
seal there is no need to say where the loop ends,

perfectly capable of deciding which END goes w
line 20 the end of the conditional loop is signif
automatically returned to line 8 in PL/1

plicitly returned in Fortran by the GO TO 80. In
1 that is necessary to terminate the program. Not
semicolon following it and not, as in Pascal
rtran has STOP before END.

in PL/
The c

ith wh
ied;
or Pas
PL/1 ,
e that

1 as in
ompiler
ich DO.
control
cal and
END is
it has

period.

286 Programming in Other Languages

ALGOL 60

We will now show a program written in Algol to produce the
same result as we showed in Pascal, Fortran 7 7 and PL/ 1 . The
actual dialect i s that of Algol-W.

ALGOL -W

$JOB ALGOL-W
BEGIN

COMMENT THIS IS A COMMENT;
INTEGER LIFE,YEAR;
REAL COST,DEPREC,BALNCE;
READ(COST,LIFE);

WHILE(LIFE^-99)DO
BEGIN WRITE('COST- ',COST,' LIFE- ',LIFE);

DEPREC:-cost/life;
BALNCE:-COST;
FOR YEAR:-1 UNTIL LIFE DO

BEGIN
BALNCE:-BALNCE-DEPREC;
WRITE(YEAR,BALNCE)

END ;
READ(COST,LIFE)

END

END .

$DATA

This program is closer to Pascal than to the PL/1 and Fortran
programs already given. It has the keyword BEGIN as a header and
this is also used to begin the body of the conditional loop in
line 9 and the indexed loop in line 14. Each BEGIN has its
corresponding END. There is no input or output formatting at all
in Algol-W, so we use the unformatted READ and WRITE. You
probably can see that these four languages have many
similarities. The assignment statement of Pascal and Algol uses

instead of as do PL/1 and Fortran.

For a while Algol-60 enjoyed considerable popularity partly
because it was hoped that it might become an international
standard language, not linked to any specific machine
manufacturer. (Fortran had originated with IBM). Two other
virtues that it enjoyed were that it supplied control structures
that permitted well-structured programs and, perhaps less
important, that its syntax had been defined in a formal way.

Fortran has maintained its prominence over the years and,
since Fortran 66, is no longer connected with just one
manufacturer. Its syntax is formally described by the American

1
2
3
4
5
6
7
8
9

1 0
1 1
12
1 3
1 4
1 5
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

COBOL 287

National Standards Institute (X3.9-1978). The fact that Fortran
77 now has an IF... THEN... ELSE helps structured programming. Its
new character handling ability (which Algol-W had) enlarges its
usefulness. And format-free input and output (which Algol-W had)
makes it easier for the beginner. Ultimately most programs
require formatted input and output so that the format-free
statements are not often used by experienced programmers.

COBOL

A complete Cobol program consists of a number of different
divisions which permit great flexibility in the use of the
various input-output components of a computer system. These are
called the IDENTIFICATION, ENVIRONMENT, and DATA divisions. Some
compilers, such as Watbol from the University of Waterloo allow a
beginning Cobol programmer to by-pass these divisions by using a
standard assignment for files, card reader, and printer. We will
just show the remaining part of a Cobol program which consists of
the WORKING STORAGE SECTION and the PROCEDURE DIVISION. These
are the parts that correspond to our other programs. The WORKING
STORAGE SECTION contains the parts that are in declarations and
format specifications. Variables and formats are described in
terms of pictures (PIC). In the PIC description a 9 indicates a
digit, an X any character, and a V a decimal point. A picture
described as

PIC 9(6)V9(2)

is of a number with 6 digits to the left of the decimal point and
2 digits to the right. The name FILLER is used for blanks in a
record or print line. Like Pascal, Cobol has records. PL/1 also
has records but Fortran does not. The record name is defined at
level 01, the fields at level 02. Although our example does not
show it, a record may be moved from one place to another as a
unit. This is a feature that PL/1 also has. Individual
variables not used for input or output have level 77.

Cobol was intended to provide business people with very
readable programs, a goal that we applaud, but sometimes as a
programmer it gets monotonous writing out all the keywords in a
Cobol sentence. There are alternatives; for instance, the
sentence

SUBTRACT DEPREC FROM BALNCE.

could be written as

COMPUTE BALNCE-BALNCE-DEPREC.

and then it would look like our other languages.

Each Cobol sentence ends with a period. The corresponding
line numbers of the other programs are given along the left
margin. The Cobol program itself is punched on cards starting in

288 Programming in Other Languages

column 8 (called margin A), and most of the program
to start in column 12 (called margin B).

COBOL Program

WORKING STORAGE SECTION.

1 S

4 77 YEAR PIC 9(2).
5 77 DEPREC PIC 9(6)V9(2).
5 77 BALNCE PIC 9(6)V9(2).

0 1 INPUT-RECORD
5 02 IN-COST PIC 9(6)V9(2).

02 FILLER PIC X(1) VALUE IS SPACE.
4 02 IN-LIFE PIC 9(2).

02 FILLER PIC X(69).

0 1 OUTPUT-LABEL
9-1 0 02 FILLER PIC X(6) VALUE IS ' 'COST- '
9-10 02 OUT-COST PIC 9(6)V9(2).
9- 1 0 02 FILLER PIC X(7) VALUE IS ' LIFE-
9-1 0 02 OUT-LIFE PIC 9(2)

0 1 OUTPUT-RECORD
02 FILLER PIC X(1) VALUE IS SPACE .

5-16 02 OUT-YEAR PIC 9(2).
5-16 02 OUT-BALNCE PIC 9(6)V9(2).

6-7

8
8

22

9-1 0
9- 1 0
9- 1 0
9- 1 0

1 1

1 1

12
1 3
1 3
1 3
18-19

1 4
15-16
15-16
15-16
15-16

PROCEDURE DIVISION.
OPEN INPUT INPUT-FILE

OUTPUT PRINTER.
READ INPUT-FILE INTO INPUT-RECORD

AT END MOVE HIGH-VALUES TO IN-LIFE
PERFORM OUTER-LOOP

UNTIL IN-LIFE EQUALS HIGH-VALUES.
CLOSE INPUT-FILE

PRINTER.
STOP RUN.

OUTER-LOOP.
MOVE IN-COST TO OUT-COST.
MOVE IN-LIFE TO OUT-LIFE.
WRITE PRINT-LINE FROM OUTPUT-LABEL

AFTER ADVANCING 1 LINE.
DIVIDE IN-LIFE INTO IN-COST

GIVING DEPREC ROUNDED.
MOVE IN-COST TO BALNCE.
PERFORM INNER-LOOP

VARYING YEAR FROM 1 BY 1
UNTIL YEAR IS GREATER THAN IN-LIFE,

READ INPUT-FILE INTO INPUT-RECORD
AT END MOVE HIGH-VALUES TO IN-LIFE,

INNER-LOOP.
SUBTRACT DEPREC FROM BALNCE.
MOVE YEAR TO OUT-YEAR.
MOVE BALNCE TO OUT-BALNCE.
WRITE PRINT-LINE FROM OUTPUT-RECORD

AFTER ADVANCING 1 LINE.

intended

Chapter 20 Summary 289

In the PROCEDURE DIVISION it is necessary to OPEN the input
and output devices and at the end to CLOSE them before STOP RUN.
high-values is a keyword meaning a value beyond the normal range
of a variable similar to putting 99 for LIFE in the Fortran or
PL/1 programs to indicate the end-of-file. A loop body is listed
separately under a paragraph name. For example, the outer
conditional loop, called OUTER-LOOP, is invoked by the sentence

PERFORM OUTER-LOOP
UNTIL IN-LIFE EQUALS HIGH-VALUES.

The body of this loop is listed after the paragraph heading.

OUTER-LOOP.

In the outer loop the counted inner loop is invoked by

PERFORM INNER-LOOP
VARYING YEAR FROM 1 BY 1
UNTIL YEAR IS GREATER THAN IN-LIFE.

and the inner loop body is listed after the paragraph name

INNER-LOOP.

There is no doubt that the Cobol program is longer and
wordier, but Cobol is still the most commonly used language for
business data processing.

CHAPTER 20 SUMMARY

In this chapter we have been comparing Pascal with some other
high-level programming languages. These were PL/1, Fortran (both
66 and 77), Algol 60 and Cobol. It is clear that the
fundamentals of programming learned in Pascal make it relatively
easy to learn other languages.

The following important terms were introduced in this

chapter.

Incompatible - dialects of the same basic programming language
are incompatible if programs that are correct in one dialect
are incorrect in another. Fortran was standardized to
minimize incompatibilities among the various Fortran
compilers. Pascal is well standardized because it was

carefully defined.

Compatible subset - a portion of a more extensive language that
does not contain all the constructs present in the larger
language but may contain some restrictions on the use of the
language not enforced in the main language. PS/k is a
compatible subset of Pascal.

290 Programming in Other Languages

Extensions - constructs that are added to a language thus making
the extended language incompatible with the original
language. Fortran 77 added a number of extensions to Fortran
66. Fortran 66 programs are compatible with Fortran 77 but
not vice versa.

Portable - a program is portable if it can be run on different
computers. One way of making programs portable is to write
them in a high-level language that is an accepted standard
such as Pascal or Fortran 77. Programs written in PS/k will
run on any machine that has a Pascal compiler.

PL/1 - short for Programming Language One, a programming language
developed to contain the constructs necessary for both
scientific applications and business data processing.

Algol-60 - a programming language that many hoped would become an
international standard language for scientific computing. In
its dialect Algol-W, the ability to handle characters and
have format-free input-output was added. Pascal evolved from
this language.

CHAPTER 20 EXERCISES

1 .
and

Translate the following PS/k program segment to Algol, PL/1,
Fortran 77

IF A >- B THEN
BEGIN

A: -5 ;
WRITELN(B)

END

2. Find any three complete programs or subprograms
chapters of this book, each at least 15 lines long, and
translate them to Algol 60, PL/1, and Fortran 77.
questions about these three languages that arise in
make the translations. If you

available try running the program.

in other
try to

List any
trying to

have any of these compilers

3. Why are statement labels not needed in the Pascal, Algol and
PL/1, programs that we have shown.

4. Find a text giving Cobol programs and see if you can read and
understand some of them.

5. Various compilers respond to program syntax errors in
ways. Try purposely making a few errors in programs

for PL/1 or Fortran 77 to see what response you get from the
compiler. How does it compare with your Pascal compiler?

6. Consult a textbook on PL/1 and list three features of the
language that you did not know about after reading this chapter.

Chapter 21
ASSEMBLY LANGUAGES
AND MACHINE LANGUAGE

In this book we have presented programming in terms of the
Pascal language. Pascal is a high-level language; it provides us
with a convenient means for directing a computer to do work. The
computer cannot execute Pascal programs directly; it can only
execute programs in machine language, a low-level language.
Before a Pascal program can be executed by a computer, the
program must be translated or compiled to machine language. In.
this chapter we will explain how a computer carries out
instructions. We will present features of machine languages and
their associated assembly languages.

MACHINE INSTRUCTIONS

In Chapter 2 we gave a brief introduction of machine
language. We explained that the instructions a computer can
execute are much more basic than Pascal statements. These
machine instructions use a special location, called the
accumulator, when doing arithmetic or making assignments. For
example, the assignment of J to I, written as the Pascal
statement

I: -J ;

could be translated to the instructions

LOAD J (copy J into the accumulator)
STORE I (copy the accumulator into I)

As another example, the Pascal statement

I:-J+K;

could be translated into the three instructions

291

292 Assembly Lenguage and Machine Language

LOAD
ADD
STORE

J
K
I

Dif ferent

(copy J into the accumulator)
(add K to the accumulator)
(copy the accumulator into I)

kinds of computers have different machine
languages. Some computers have many accumulators and some have
few. Some computers have many instructions and some have few.
We will introduce common features of machine languages by
inventing a very simple computer. We will call our computer VS
for very simple computer. '

The machine instructions for the VS computer are designed to
be convenient for representing programs written in a subset of
Pascal. The VS computer has never
hypothetical machine that we will use to
computer languages.

been built; it is just a
illustrate points about

The instructions for the VS computer have the form

operator operand

for example,

STORE I

The operator of an instruction tells the computer what to do; the
operand tells the computer what to do it to.

After the computer executes one instruction, it continues to
the next, unless the executed instruction directs the computer to
jump to another instruction or to skip an instruction. We can
translate the Pascal statements

IF I<-K THEN
K:-I+J;

I : - J ;

into the VS computer instructions

LOAD
SKIPLE
JUMP
LOAD
ADD
STORE
LOAD
STORE

K
C

L
I
J
K
T
u

I

(copy K into the accumulator)

I<"accumulator, skip next instruction)
(jump to instruction labeled L)
(copy I into the accumulator)
(add J to the accumulator)
(copy the accumulator into K)
(copy J into the accumulator)
(copy the accumulator into I)

labelort '’Jh' ^ Of an instruction; instructions
PS/k thar«^° r;? jumped to. In full Pascal, but not in

, ' statement labels and there is a GOTO statement

PasLl thf?o?r instruction. m full
iu^riav! following statements are equivalent to the example we
J ^ d U* U O V o *

Instruction for a Very Simple Computer 293

IF I>K THEN
GOTO 23;

K:-I+J;
23:I:-J;

GOTO statements were purposely left out of PS/k because careless
use of them leads to unreadable programs. One of the reasons
that low-level languages are inconvenient to use is that they do
not directly provide looping constructs, such as WHILE...DO, and
selection constructs, such as IF ... THEN... ELSE. The programmer
must build up these constructs using instructions like jumps and
skips. When an PS/k program is translated into a low-level
language, the loop and selection constructs appear as jumps and
skips.

INSTRUCTIONS FOR A VERY SIMPLE COMPUTER

The VS computer has an instruction to print the value in the
accumulator;

PUTINTEGER

This instruction needs no operand because the accumulator's value
is always printed. There is an instruction to print messages:

PUTSTRING operand

The operand represents
instruction that directs

a string to
the machine to

be printed. There is an
stop executing a program:

HALT

The HALT instruction has no operand.

Altogether the
computers have many
This table lists the

VS computer has nine
more instructions,
VS instructions.

instructions; most real
typically around 100.

Operator Operand Action by Computer

1 LOAD variable Assign variable to accumulator.
2 STORE variable Assign accumulator to variable.
3 ADD variable Add variable to accumulator.
4 SUBTRACT variable Subtract variable from accumulator.
5 JUMP label Jump to labeled instruction.
6 SKIPLE variable If variable<-accumulator then skip

next instruction.
7 PUTINTEGER (none) Print the integer in the accumulator.
8 PUTSTRING string Print the string.
9 HALT (none) Halt, the program is finished.

We have purposely kept the VS computer simple by leaving out
instructions that might normally be part of the instruction set

294 Assembly Language and Machine Language

of a computer. We have left out a whole set of skip
instructions, such as SKIPGT (skip when greater than). We left
out instructions for doing REAL arithmetic and for reading from
data cards. We left out instructions for manipulating character
strings, indexing arrays, and calling and returning from
procedures. These additional instructions are important in a
real computer; if you like, you can design a "super" VS computer
that includes them.

TRANSLATION OF A PASCAL PROGRAM

If we use some care
an entire Pascal program
Pascal program requires
on the VS computer:

in picking our example, we can translate
into VS instructions. This example

only the types of instructions available

High-Level Language Low-Level Language

PROGRAM T (INPUT,OUTPUT);
VAR I: INTEGER;
BEGIN

WRITELN(' POWERS OF 2');
I : - 1 ;

WHILE I<-8 DO
BEGIN

WRITELN(I);

I:-I+I

END
END .

PUTSTRING
LOAD
STORE

LI:LOAD
SKIPLE
JUMP
LOAD
PUTINTEGER
LOAD
ADD
STORE
JUMP

L2:HALT

TITLE
ONE
I
EIGHT
I
L2
I

I
I
I
L 1

The first VS instruction in
TITLE; TITLE gives the location
Similarly, ONE and EIGHT give
8 .

this ex
of the s
the locat

ample has as its operand
tring ' POWERS OF 2'.
ions of the values 1 and

MNEMONIC NAMES AND MACHINE LANGUAGE

Up to this point we have written VS
such as LOAD, STORE, I and J. These name
machine language that a computer execut
numbers. We will now show how these name
appropriate numbers.

As you may recall from Chapter 2
computer consists of a sequence of words,
are numbered; the number that corresponds
called the location or address of the wor

instructions using names
s are not present in the
es; they are replaced by
s can be translated into

, the main memory of the
The words of memory

to a particular word is
d. Words can be used to

Mnemonic Names and Machine Language Program 295

represent variables. For example, the variables I, J and K could
be represented by the words with locations 59, 60 and 61. Here
we show these three words after I, J and K have been assigned the
values 9, 0 and 14.

There is no special significance to 59, 60 and 61. We could just
as well represent I, J and K by locations 42, 3 and 87; the
important thing is to remember which location corresponds to
which variable.

If I , J and K correspond to location 59, 60 and 61, we can
write the instructions

LOAD J
ADD K
STORE I

as

LOAD 60 (copy contents of word 60 into accumulator)
ADD 61 (add contents of word 61 to accumulator)
STORE 59 (copy accumulator into word 59)

The VS instruction operators, LOAD, STORE and so on, are
numbered. LOAD is operator number 1, STORE is 2, ADD is 3 and so
on. The names LOAD, STORE and ADD as used in the VS instructions
are mnemonic names; a mnemonic name is an "easy-to-remember"
name. We can choose the names of the operands so that they too
are easy to remember.

Using the numbers of the operators we can write

LOAD 60
ADD 61
STORE 59

as

1 60
3 61
2 59

Instructions that consist only of numbers are in machine
1anguage. Instructions that contain mnemonic names,
and I, are in assembly 1anguage.

such as LOAD

296 Assembly Language and Machine Language

Assembly Language Machine Language

LOAD J
ADD K
STORE I

1 60
3 61
2 59

As you c
language
language
assembly 1
over mach
translate
correspond
show it he
initialize
location 5
reserved f

an see, there is a simple translation from assembly
to machine language. Writing programs in machine
is even more inconvenient than writing programs in
anguage. People almost always prefer assembly language
ine language; they use a program called an assembler to
mnemonic names in assembly language programs to

ing numeric operators and operands. Although we do not
re, assemblers allow the programmer to reserve and

memory for variables and constants. For example,
9 would be reserved for I, and location 98 could be
or EIGHT and initialized to 8.

STORING MACHINE INSTRUCTIONS IN WORDS

The values of variables of a program are stored in words of
the computer's memory. In a similar manner, the instructions of
the program are stored in words of memory. We can use two words
to hold each VS instruction; one word for the operator and one
word for the operand. Here we show three instructions stored in
locations 18 through 23:

LOAD J

ADD K

STORE I

We could have saved space if the VS computer allowed us to pack
the operator and operand into a single word. For example, the
instruction

1 59

could be packed into a single word as

1059

with the convention that the rightmost three digits are the
operand and the other digits are the operator. Instructions for
real computers are packed into words to save space, but to keep
things simple, the VS computer uses two words for its
instructions.

A JUMP instruction has as its operand the label of an
instruction. When a JUMP instruction is written in machine
language, the label must be a number. The number used is the

Mnemonic Names and Machine Language Program 297

location of the instruction being jumped to. Here is a
translation of assembly language into machine language; the label
L becomes 48:

JUMP L

LOAD I

ADO J

STORE K

L:LOAD J

Just as the variables and instructions are stored in words in
memory, strings such as ' POWERS OF 2' are stored in memory. In
real computers this is done by packing several characters into
each word. Since mixing characters and numbers is confusing, we
will assume that the VS computer has a separate part of its
memory used only for strings. Each string is saved in a
different location in the special string memory. If the string
' POWERS OF 2' is in location number 1 in the special string
memory, then we translate the Pascal statement

WRITELN(' POWERS OF 2');

to the machine instruction

8 1 (PUTSTRING TITLE)

We have now shown how to translate all VS instructions into
numbers and thus into machine language. We will return to our
program that prints powers of 2 and will translate it to machine
language.

A COMPLETE MACHINE LANGUAGE PROGRAM

We will assume that a VS computer starts by executing the
instruction in words 0 and 1. So we will place our machine
language instructions in words 0, 1, 2, 3, ... We will continue
assuming that variable I corresponds to memory location 59. The
integer constants 1 and 8 will be represented by memory locations
91 and 98; these locations are initialized to hold the values 1
and 8 before the program is executed. We show the program as it
would appear in memory after having executed instructions in
locations 0 through 14. Up to this point the program has printed

POWERS OF 2
1

The VS computer has an instruction pointer, presently set to 16,
that locates the next instruction to be executed. When an
instruction has no operand, we give it a dummy operand of zero;
for example, HALT becomes 9 0.

298 Assembly Language and Machine Language

STORAGE OF PROGRAM IN COMPUTER

INSTRUCTION POINTER 16 ACCUMULATOR 1

--

0

MEMORY

8 1 (PUT.STRING TITLE)

2 1 91 (LOAD ONE)

4 2 59 (STORE I)

6 1 98 (LL LOAD EIGHT)

8 6 59 (SKIP.LE I)

10 5 24 (JUMP L2)

12 1 59 (LOAD I)

14 7 0 (PUT_INTEGER)

L»-I6 1 59 — (LOAD I)

18 3 59 (ADD I)

20 2 59 (STORE I)

22 5 6 (JUMP LI)

24

• * •

9 0 (L2 HALT)

58

• *

1 ^ (59 CORRESPONDS TO I)

90

• • *

1 (91 CORRESPONDS TO ONE)

98 8 (98 CORRESPONDS TO EIGHT)

SPECIAL STRING MEMORY

I 'POWERS OF 2 '

2

Simulating a Computer 299

SIMULATING A COMPUTER

A VS computer has never been built and undoubtedly never will
be built. It might seem that we can never have a VS machine
language program executed. But we can, by making an existing
computer simulate a VS computer. This is done by writing a
program, called a simulator, that acts as if it is a VS computer.
We will discuss later in more detail the importance of simulators
in computing, but first we will develop a Pascal procedure that
is a simulator for the VS computer.

The VS computer has an accumulator, which can be simulated by
a variable declared by

VAR ACCUMULATOR: INTEGER;

It also has a memory containing 100 words, whose addresses are 0
to 99. This can be simulated by an array:

CONST MEMORYSIZE-99;
VAR MEMORY: ARRAY[0..MEMORYSIZE] OF INTEGER;

There is a special string memory. Assuming that the VS computer
can hold, at most, 10 strings of length at most 80, we can
simulate the string memory by another array:

CONST STRINGSIZE-80;
NUMBEROFSTRINGS-10;

VAR STRING: ARRAY[1..NUMBEROFSTRINGS] OF
PACKED array!1..STRINGSIZE] OF CHAR;

We need an instruction pointer to keep track of which instruction
is to be executed next.

VAR INSTRUCTIONPOINTER: INTEGER;

When the VS computer is executing, the instruction pointer
has a particular value, say 10, indicating that word 10 contains
the operator of the next instruction to be executed. Word 11
contains the operand. If OPERATOR and OPERAND are declared as
INTEGER variables in the simulator, then they should be given
values by:

OPERATOR:-MEMORY[INSTRUCTIONPOINTER];
OPERAND:-MEMORY[INSTRUCTIONPOINTER+1];

If the OPERATOR is 1, meaning LOAD, the simulator carries out the
LOAD machine instruction by executing:

ACCUMULATOR:-MEMORY[OPERAND];

If the OPERATOR is 2, meaning STORE, the simulator carries out
the STORE instruction by executing:

MEMORY[OPERAND]:-ACCUMULATOR;

300 Assembly Language and Machine Language

Similarly, the simulator can carry out the other VS instructions.
After each instruction is carried out, the INSTRUCTIONPOINTER is
incremented by 2 and OPERATOR and OPERAND are set for the next
instruction. When the instruction
INSTRUCTIONPOINTER can be modified
the next sequential instruction will

is a JUMP or SKIP, then
so an instruction other than
be selected. For example.

if the OPERATOR is 6, for SKIPLE, the simulator executes this

IF memory!OPERAND]<-ACCUMULATOR THEN
INSTRUCTIONPOINTER:-INSTRUCTIONPOINTER+2;

We will use named constants for each of the VS instructions

CONST LOAD-1;
STORE-2 ;

HALT-9;

These declarations should be global to the simulator procedure,
and we will use

CONST FIRSTINSTRUCTION-0;

to specify that execution begins with the instruction in words
zero and one.

Now we give the complete simulator as a Pascal procedure.
This procedure assumes that the MEMORY and STRING arrays have
been declared and initialized.

Uses o f Simula tors 301

(* THIS PROCEDURE SIMULATES A VERY SIMPLE COMPUTER *)

PROCEDURE SIMULATOR;
VAR ACCUMULATOR,INSTRUCTIONPOINTER,

OPERATOR,OPERAND: INTEGER;

BEGIN
INSTRUCTIONPOINTER:"FIRSTINSTRUCTION;
OPERATOR:-MEMORY[INSTRUCTIONPOINTER];
OPERAND:-MEMORY[INSTRUCTIONPOINTER+1];
WHILE OPERATOROHALT DO

BEGIN
CASE OPERATOR OF

LOAD:
ACCUMULATOR:-MEMORY I OPERAND] ;

STORE:
MEMORY[OPERAND 1 :-ACCUMULATOR;

ADD:
ACCUMULATOR:-ACCUMULATOR+MEMORY[OPERAND];

SUBTRACT:
ACCUMULATOR:-ACCUMULATOR-MEMORY[OPERAND];

JUMP :
INSTRUCTIONPOINTER:-OPERAND-2; (* 2 ADDED BELOW *)

SKIPLE:
IF memory!OPERAND1<-ACCUMULAT0R THEN

INSTRUCTIONPOINTER:-INSTRUCTIONPOINTER+2;

PUTINTEGER:
WRITELN(ACCUMULATOR);

PUTSTRING:
WRITELN(STRING[OPERAND])

END;
INSTRUCTIONPOINTER:-INSTRUCTIONPOINTER+2;
OPERATOR:-MEMORY[INSTRUCTIONPOINTER1;
OPERAND:-MEMORY[INSTRUCTIONPOINTER+11

END
END;

If you want to run a VS machine language program, you can
write a main procedure to put the numbers representing the
program and constants into the MEMORY array, initialize the
STRING array and then call the SIMULATOR procedure.

USES OF SIMULATORS

We will now discuss some of the uses of simulators. Our
simulator for the VS computer can be used to execute VS machine
language programs. But it can serve another purpose, too. By
reading the SIMULATOR procedure, you can determine the actions
carried out for each VS instruction; if you did not know how a VS
computer worked, you could find out by studying its simulator.
So not only can the simulator direct one computer to act like
another, it can also show how a computer works.

Computer simulators are often used to allow programs written
for one machine to execute on another machine. For example, a

302 Assembly Language and Machine Language

business may
After the old
computer can
machine.

buy a new computer to replace an old computer,
computer is removed, programs written for the old

be executed by a simulator running on the new

Sometimes
some particula
compilers es
minicomputers.
translation f
machine langua
using a Simula
such as the Pa
real computer
required becau
the computer.

a hypothetical computer is
r problem. This is the case
pecially those that run

A hypothetical computer is
rom Pascal programs to the
ge. The translated Pascal
tor for the hypothetical mac
seal 6000 compiler, transla
's machine language; then
se the translated program is

designed to help solve
with several Pascal

on microcomputers and
designed to allow easy

hypothetical computer's
programs are executed
hine. Other compilers,
te programs into the

a simulator is not
executed directly by

CHAPTER 21 SUMMARY

In this chapter we have presented features of machine
language in terms of a very simple hypothetical computer called
VS. The VS computer has an accumulator that is used for doing
calculations. There are VS machine instructions for loading,
storing, adding to, subtracting from, and printing the
accumulator. There is a machine instruction for printing
strings. There are instructions for jumping to instructions,
skipping instructions and for halting. The nine VS machine
instructions were sufficient for the translation of the example
Pascal program given in this chapter. Real computers typically
have many more instructions. The following important terms were
discussed in this chapter:

Word - the computer's main memory is divided into words.
Each word can contain a number. In real computers, a
word can contain several characters, for example, 4
characters.

Location (or address) - the number that locates a particular
word in the computer's main memory.

Operators and operands - most VS machine instructions, such
as ,

LOAD I

consist of an
and I in this
operator but no

operator
example.

operand.

and an
Some

operand; these are LOAD
instructions have an

Mnemonic name
something.
VS machine

a name that helps programmers remember
For example, STORE is the mnemonic name for

instruction number 2.

Chapter 21 Exercises 303

Machine language - the purely numeric language that is
directly executed by a particular type of computer.
Some computer manufacturers sell families of computers,
of various sizes and speeds, that all use the same

machine language.

Assembly language - programs
mnemonic names corresponding
machine language. They al
choose mnemonic names for the

in assembly language
to the numeric operator
so permit programmers
operands and labels.

use
s of

to

Assembler - a program that translates programs written in
assembly language to machine language.

Label - a name
instruction
instruction,
control to a
as written
control to a

that gives the location of a machine
or a statement. The JUMP machine
as written in assembly language, transfers

labeled instruction. The GOTO statement,
in full Pascal, but not in PS/k, transfers
labeled statement.

Simulator - a program that simulates some system such as a
computer. A simulator treats a sequence of numbers as a
machine language program and carries out the specified

operations.

CHAPTER 21 EXERCISES

1. The VS computer described in this chapter does not have an
instruction for reading data. Invent an instruction named
GETINTEGER that reads the next integer in the data into the
accumulator. Show how to translate a statement such as

READ(K);

into VS machine language, as augmented by GETINTEGER. Show how
the SIMULATOR procedure given in this chapter can be modified to

execute GETINTEGER instructions.

2. Translate the following Pascal program into VS assembly

language and then into VS machine language.

PROGRAM T {INPUT,OUTPUT);
VAR I,J: INTEGER;
BEGIN

I : -1 ;
J : "5 ;
IF I<-J THEN

WRITELN(' I IS SMALLER')

ELSE
WRITELN(' J IS SMALLER')

END.

304 Assembly Language and Machine Language

3. What will the following VS assembly language program print?
Translate the program to both machine language and Pascal.

LOAD ZERO
STORE PREVIOUS
LOAD ONE
STORE CURRENT
LOAD FIFTY
SKIPLE CURRENT
JUMP L2
LOAD CURRENT
ADD PREVIOUS
STORE NEXT
LOAD CURRENT
STORE PREVIOUS
LOAD NEXT
STORE CURRENT
PUTINTEGER
JUMP L 1

L2:HALT

4. In this chapter an example program was given that prints
powers of 2. Have this program executed by the VS simulator
given in this chapter. This can be done by writing a main
procedure that declares MEMORY and STRING arrays, initializes
these arrays to hold the machine language version of the example
program, and then calls the SIMULATOR procedure.

5. Invent new instructions for the VS computer that allow array
indexing and procedure call and return.

Chapter 22
PROGRAMMING LANGUAGE
COMPILERS

High-level languages such as Pascal provide a convenient tool
to help us use computers. We use a translator or compiler to
translate our Pascal programs to machine language.

In this chapter we will show how compilers bridge the gap
between high-level languages, which are convenient for people,
and machine languages, which can be directly executed by a
computer. We will define a simple programming language called
PPS/3, and then we will show how programs written in that
language can be translated to the machine language for the very
simple (VS) computer described in the last chapter.

We will give a compiler that reads cards containing a PPS/3
program and translates the program to VS machine language. Our
compiler will be written as a Pascal procedure that is about 200
lines long. Since our compiler is longer than any program we
have given before, it provides better examples of step-by-step
refinement and modular programming. Compilers are usually very

large programs.

A SIMPLE HIGH-LEVEL LANGUAGE

We will invent a simple high-level language to illustrate
points about compilers and computer languages. We will call our
language PPS/3, because it contains part of the features of PS/3.

PPS/3 does not have any of the features of PS/4 through PS/8:
no character variables, no arrays, no procedures, and no files.

PPS/3 allows:

-INTEGER variables named A or B or C ... or Z, but no REAL
variables. All INTEGER variables used in a program must be

declared via

305

306 Programming Language Compilers

VAR list of variables separated by commas: INTEGER;

- Addition and subtraction, but no multiplication or
division, and no parentheses in expressions.

- INTEGER constants 0, 1, 2,..., 9, but no multiple-digit
constants such as 21, no signed constants and no REAL
constants.

- WRITELN statement.
The output item can be
integer expression,
quote, so ' DON''T' is

Exactly one output
a literal such as
Literals may not
not allowed.

item must be given.
HI THERE' or an

contain an embedded

- Assignment statements.

WHILE loops. The only allowed comparison is
following are not allowed >-, -, <, >, <>). No
operators (AND , OR, NOT) are allowed. We will als
that there is a compound statement after the WHILE
there would always be a BEGIN..END. Counted FOR loop
statements are disallowed.

<- (the
logical

o assume
so that
s and IF

- Every PPS/3 program is named T, so each program begins

PROGRAM T (INPUT,OUTPUT);

This list of restrictions applied to PS/3 defines the PPS/3
language.

Since PPS/3 is a subset of PS/k, a PPS/3 program can be
translated by a Pascal compiler. PPS/3 is so limited that it is
not particularly useful for solving problems; we impose these
limitations so we can develop a complete PPS/3 compiler in this
chapter.

Things have been arranged so that it is relatively easy to
translate PPS/3 programs to machine language for the very simple
(VS) computer described in the last chapter. The program from
the last chapter that prints powers of 2 is an example of a PPS/3
program.

SYNTAX RULES

Each programming language has rules that a p
follow when writing a program. For example,
statements must be separated by a semicolon and e
be matched by a following END. Rules such as th
grammar or syntax of the language. By now you s
syntax for the PS/k subsets of Pascal by heart; th
should be able to tell whether a PS/k statemen
formed.

ogrammer must
in Pascal,

ch BEGIN must
se give the
ould know the
s means you
is correctly

Syntax Rules 307

W© have described the PPS/3 language by explaining how it
differs from PS/3. W© will now describe PPS/3 more directly by
giving its syntax. The syntax for PPS/3 consists of nine rules.
In the syntax rules, the wiggly brackets I ! mean that the
enclosed item is optional or can be repeated any number of times.

Thus, the notation

variable I,variable!

means a list of variables separated by commas.

1. A program is:
PROGRAM T {INPUT,OUTPUT);

VAR variablel,variable! : INTEGER;
BEGIN

statement!; statement 1
END.

2. A statement is on© of the following:
a. WRITELN(output item)
b. variable expression
c. WHILE expression <- expression DO

BEGIN
statement!; statement I

END

3. An output item is on© of the following:
a. expression
b. literal

4. An expression is:
value !op©rator value!

5. A value is on© of the following:
a. variable
b. integer

6 . An operator is : + or -

7 . A variable is: A or B or C ... or Z

8 . An integer is: 0 or 1 or 2 ... or 9

9 . A literal is: ' !any non-quote character

Our syntax rules specify the allowed forms of PPS/3 programs.
Rule 2 specifies that the only allowed statements are WRITELN,
assignment and WHILE ... END. Since other statements such as
READ and IF are not specified in the syntax, they are not allowed
in PPS/3. Rule 2 specifies that a WHILE loop contains a list of
statements enclosed in BEGIN and END; since a WHILE loop is
itself a statement, rule 2 implies that WHILE loops can be nested
inside WHILE loops. Rule 2 is almost a circular definition, in
that a WHILE loop is specified to be a "statement" and yet a
WHILE loop can contain "statements". W© say such a definition is

308 Programming Language Compilers

recursive; recursive definitions provide a concise way of stating
that a particular construct, such as a WHILE loop, can be nested
inside a construct of the same type.

USING SYNTAX RULES TO PRODUCE A PROGRAM

A PPS/3 program is considered to be syntactically correct if
it can be produced or developed using the syntax rules. We start
with rule 1 and produce a "program" of the form

PROGRAM T (INPUT,OUTPUT);
VAR variable l,variablel : INTEGER;
BEGIN

statementi; statement 1
END.

The symbols written in small letters, "variable" and "statement",
will not be a part of the final program. Instead, they represent
a set of possibilities. By contrast, symbols such as "T",

PROGRAM , ; and END are a part of the final program.
Symbols like "variable" and "statement" that do not appear in the
final program are called non-terminal symbols. Symbols such as
"T", "PROGRAM", and "END" are called terminal symbols because
they appear in the final program.

We can produce a PPS/3 program using our syntax rules by
starting with rule 1 and successively using rules to replace non¬
terminal symbols, such as "statement", until we are left with
nothing but terminal symbols. In previous chapters, we have
shown how to develop programs by step-by-step refinement.
Producing programs using syntax rules is analogous to step-by-
step refinement, but serves an entirely different purpose. We
use step-by-step refinement as a method of designing programs.
By contrast, we check the syntax of a given program by trying to
produce it using the syntax rules. We will illustrate this
process by using the PPS/3 syntax rules to verify that an example
program is syntactically correct. We will use as our example the
program from the last chapter that prints powers of 2:

Using Syntax Rules to Produce a Program 309

PROGRAM T (INPUT,OUTPUT);
VAR I: INTEGER;
BEGIN

WRITELN(' POWERS OF 2');
I:«1 ;
WHILE I<«8 DO

BEGIN
WRITELN(I);
I:"I+I

END
END.

We start with rule 1 and produce

PROGRAM T {INPUT,OUTPUT);
VAR variable l,variablel : INTEGER;
BEGIN

statementl; statement 1
END.

In order to produce the desired final program we replace the
parts

variable l,variablel

and

statementl; statement I

by the corresponding parts

variable

and

statement;
statement;
statement

Our program has now become

PROGRAM T (INPUT,OUTPUT);
VAR variable: INTEGER;
BEGIN

statement;
statement;
statement

END.

We can now use rule 7 to produce I from "variable", making the
declaration become

VAR I: INTEGER;

310 Programming Language Compilers

We can produce the first WRITELN statement in our example program
by applying rules 2a, 3b and 9 in succession to the "statement"
immediately following the BEGIN:

statement;
WRITELN(output item);
WRITELN(literal);
WRITELN(' POWERS OF 2');

(produced using rule 2a)
(produced using rule 3b)
(produced using rule 9)

Up to now, we have used the syntax rules to produce

PROGRAM T (INPUT,OUTPUT);
VAR I: INTEGER;
BEGIN

WRITELN(' POWERS OF 2');
statement;
statement

END.

We can apply rules 2b, 7, 4, 5b and 8 to transform
"statement"; following WRITELN to the desired form:

statement;
variable:"expressi

c
o

 (produced using rule 2b)
I: -expression; (produced using rule 7)
I;-value; (produced using rule 4)
I:-1 ; (produced using rules 5b,8)

We can
loop:

now transform the last "statement" to the desired WHILE

statement

WHILE expression<-expression DO (rule 2c)
BEGIN

statement;
statement

END

WHILE I<-8 DO (rules 2a, 2b, 3a, 5, 6, 7 and 8)
BEGIN

WRITELN(I);
I:-I+I

END

We have now used the syntax rules to produce the example program
that prints powers of 2. Since this program can be produced
using the syntax rules, it is syntactically correct.

Syntax rules provide a concise way of describing a language.
They do not completely describe a language. For example, the
syntax rules for PPS/3 do not imply that every variable used in
the program must be declared. The syntax rules for PPS/3
describe all legal PPS/3 programs, but they describe some illegal
ones as well, in particular the ones with undeclared variables.

Actions of the Compiler 311

One of the most important uses of syntax rules is for
specifying a high-level language so that a compiler can be
written for the language. In the next sections we develop a
complete compiler for PPS/3. Because of the level of detail in
these sections, some readers may choose to skim them or to skip
them altogether.

ACTIONS OF THE COMPILER

To keep our compiler simple, we will make several assumptions
about PPS/3 programs. We will assume that PPS/3 programs never
contain errors, so our compiler will not need to check for such
errors. In the real world of programming, this would be a
disastrous assumption; we are making it only so the example
compiler can be smaller.

We will assume that every PPS/3 program is surrounded by the
control cards %JOB and %DATA in this manner:

% JOB
PPS/3 program

%DATA

Our compiler will use the %DATA card to detect the end of a PPS/3
job; it will ignore the %JOB card.

To present the compiler we will consider each of the
following seven types of lines separately; they will appear on
separate cards in a PPS/3 program. Whether or not there is a
semi-colon or period will be ignored.

PROGRAM T (INPUT,OUTPUT);
VAR ...: INTEGER;
BEGIN
WRITELN(. . .)
variable:"expression
WHILE ... DO
END

We will assume there are no cards that are all blank. Since
every PPS/3 program begins with the same line,

PROGRAM T (INPUT,OUTPUT);

this line can be ignored by our compiler.

A real Pascal compiler analyzes declarations to determine the
types of variables and to see that memory space is set aside to
represent the variables. Our compiler takes advantage of the
fact that all PPS/3 variables are INTEGER and must be named A, B,
C, ... or Z. Our compiler always sets aside enough memory for
all 26 possible PPS/3 variables, regardless of whether they are
used in the particular program. This wastes memory, but it makes

312 Programming Language Compilers

our compiler simpler. The only purpose of the declarations in
PPS/3 is so that PPS/3 programs are legal PS/k programs.

The PPS/3 compiler can simply ignore the first four cards:

?5J0B
PROGRAM T (INPUT,OUTPUT);

VAR ...: INTEGER;
BEGIN

Having skipped these four cards, the compiler must translate each
of the following five types of cards to machine language:

WRITELN(...)
variable:"expression
WHILE ... DO
BEGIN
END

When the compiler reads each of these cards, it should take these
actions:

Type of Card Action by Compiler

WRITELN(output item) If the output item is a literal, then
an instruction is generated to print
the literal. Otherwise instructions
are generated to find the value of
the expression and print it.

variable:-expression Instructions are generated to find
the value of the expression and to
store it in the variable's memory
location.

WHILE expr<-expr DO Instructions are generated to find
the values of the two expressions.
Then instructions are generated to
compare their values, and either to
execute the body of the loop or
to jump beyond the body of the loop.

BEGIN This is ignored.

END If the END is for a WHILE loop,
then a JUMP instruction is generated
to repeat the loop. If it is the
final END of the program, a HALT
instruction is generated.

We can modularize
carry out the above

our compiler by defining
actions:

four procedures to

Scanning Words and Characters 313

COMPILEWRITELN
COMPILEASSIGNMENT
COMPILEWHILE
COMPILEEND

After reading a card', the compiler can decide which of these
procedures to call by inspecting the first word on the card. We
will define the procedure:

SCANWORD - skips blanks and finds the first (or next) word
on a card and records it in NEXTWORD and its
length in LENGTH

Since each PPS/3 identifier consists of one letter, our compiler
can recognize an assignment statement by seeing if the length of
the first word on the card is 1. Using these procedures, we can
now give the structure of our compiler:

Do any required initialization;

Read and print four cards (%JOB, PROGRAM T...,VAR..., and BEGIN)
WHILE card!1]<>'%' DO

BEGIN
Read and print card;
SCANWORD;
CASE LENGTH OF

7:COMPILEWRITELN;
1:COMPILEASSIGNMENT;
5:IF CARD[1]-'W' THEN

COMPILEWHILE;
3:COMPILEEND

END
END;

Note that the word BEGIN has five letters but its first letter is
not W so that nothing happens.

SCANNING WORDS AND CHARACTERS

Within a compiler, it is often necessary to determine the
next word or character on a card. The part of the compiler that
does this work is called the scanner. Our scanner includes the
SCANWORD procedure and the two procedures:

SCANCHAR - sets NEXTCHAR to the next character on the card.
(NEXTCHAR may be set to a blank).

SCANNONBLANKCHAR - sets NEXTCHAR to the next non-blank
character on the card.

314 Programming Language Compilers

COMPILING ASSIGNMENT STATEMENTS

We will now explain how the COMPILEASSIGNMENT procedure

works. Given a card such as

I : - 1 ;

this procedure must generate machine language:

1 91 (LOAD ONE)
2 59 (STORE I)

We set aside memory locations 51 through 76 to hold variables A
through Z, so variable I corresponds to 59. We set aside memory
locations 90 through 99 to hold the allowed PPS/3 constants 0
through 9. We record this use of memory locations by named

constants.

CONST FIRSTVARIABLE-51;
FIRSTDIGIT-90;

There is no special significance to locations 51 to 76 and 90 to
99; we could have used other locations.

If PPS/3 allowed constants other than 0 to 9, our compiler
would need to reserve locations for each new constant it
encountered. We have avoided this complication by allowing only
constants 0 to 9. If you wish, you can augment our compiler so
it could accept other constants.

To generate machine language for assignment statements, the
COMPILEASSIGNMENT procedure uses three other procedures or
functions:

COMPILEEXPRESSION - generates instructions to find the value
of an expression and leave that value in the
accumulator.

COMPILEVARIABLE - determines the location corresponding to a
given variable. For example, 59 is returned for
variable I. Note that this is a function.

EMITINSTRUCTION - places one machine instruction in memory.
This procedure accepts two parameters, an operator and
an operand, and places these in two memory locations
just after the last generated machine instruction. This
procedure uses a variable called INSTRUCTIONPOINTER to
keep track of the next location to receive an
instruction. INSTRUCTIONPOINTER is initialized to zero.
Do not confuse this INSTRUCTIONPOINTER with the one used
by the simulator in the last chapter. They are two
quite different things.

Compiling Written Statements 315

When the COMPILEASSIGNMENT procedure is entered, NEXTWORD holds
the name of the variable to be assigned a value. The procedure
will do the following;

Skip over the sign;

Find the beginning of the expression;

Generate instructions to place the value of the expression
in the accumulator;

Generate a STORE instruction to assign the accumulator
to the location corresponding to the variable
in NEXTWORD;

When we write this in Pascal, we get the COMPILEASSIGNMENT
procedure.

PROCEDURE COMPILEASSIGNMENT;
(* SKIP AND FIND START OF EXPRESSION *)
BEGIN

SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
COMPILEEXPRESSION;

EMITINSTRUCTION(STORE,COMPILEVARIABLE(NEXTWORD))
END ;

As was done in the last chapter, the names of the machine
instructions, LOAD, STORE, and so on are declared as named
constants with their appropriate numeric values. This allows us
to write STORE in the call to EMITINSTRUCTION when we want to
specify operator 2.

COMPILING WRITELN STATEMENTS

The COMPILEWRITELN procedure is not much more complicated
than COMPILEASSIGNMENT. If the output item to be printed is an
expression, then the COMPILEEXPRESSION procedure is called to
generate instructions to place the expression's value in the
accumulator. The PUTINTEGER instruction will print the value in
the accumulator; this instruction is generated by executing:

EMITINSTRUCTION(PUTINTEGER,0);

Since the PUTINTEGER instruction uses no operand, a dummy operand
of zero is used.

If the output item is a literal, then the characters of the
literal are collected and placed in the next available string
location in the VS computer's special string memory. Then the
PUTSTRING instruction is generated by

EMITINSTRUCTION(PUTSTRING,STRINGNUMBER);

The variable STRINGNUMBER gives the location of the literal.

316 Programming Language Compilers

COMPILING WHILE AND END

There are two complications in compiling WHILE and END. The
first has to do with using the accumulator to evaluate two
different expressions, without losing the value of either. The
second has to do with making JUMP instructions transfer control
to appropriate locations. We will now consider the first of

these complications.

When our compiler encounters a card such as

WHILE 1+1 <- J-K DO

it must see that instructions are generated to evaluate both
expressions, 1+1 and J-K, before the comparison is made. The
difficulty is that both evaluations use the accumulator. After
1+1 is evaluated, its result, which will reside in the
accumulator, is temporarily saved while J-K is evaluated in the
accumulator. The following sequence of instructions performs the
evaluations, the temporary saving of one value, the comparison

the cond itional jump beyond the end of the WHILE loop.

LOAD I
ADD ONE
STORE TEMPORARY (save value of 1+1)

LOAD J
SUBTRACT K
SKIPLE TEMPORARY (compare values of 1+1 and J-K)

JUMP LOOPEND

These instructions are followed immediately by the body of the
loop. The value 1+1 is saved in the location called TEMPORARY.
We will arbitrarily choose location 80; our compiler will use a
named constant TEMPORARY with value 80.

The COMPILEWHILE procedure can generate the above sequence of
instructions by first executing

COMPILEEXPRESSION; (generates LOAD I and ADD ONE)
EMITINSTRUCTION(STORE,TEMPORARY);

Next, is skipped over and this is executed:

COMPILEEXPRESSION; (generates LOAD J and SUBTRACT K)
EMITINSTRUCTION(SKIPLE,TEMPORARY);

Finally, this is executed:

EMITINSTRUCTION(JUMP,0);

This leads us to the second complication in compiling WHILE and
END. When the JUMP instruction for WHILE is generated, the
compiler does not yet know where the end of the loop will be.
The operand of the JUMP is temporarily set to the dummy value of
zero .

Compiling While and End 317

Our compiler records the location of this JUMP instruction,
so its operand can be corrected when the END of the loop is
found. The COMPILEEND procedure corrects the operand of this
JUMP. It also generates a JUMP instruction to return to the
beginning of the loop. The COMPILEEND procedure must know the
location of the beginning of the loop so it can make the JUMP
instruction transfer to the correct location.

If PPS/3 programs were allowed to contain at most a single
un-nested WHILE loop, then we could easily produce the required

JUMP operands by using two variables:

WHILESTART - records location of beginning of loop.
WHILEJUMP - records location of operand of JUMP at

beginning of loop.

The COMPILEWHILE procedure would set WHILESTART to
INSTRUCTIONPOINTER, which gives the location of the instruction
to be generated next, before generating instructions to evaluate
the left expression of the comparison. The COMPILEWHILE
procedure would set WHILEJUMP to INSTRUCTIONPOINTER+1 just before
generating the instruction JUMP 0. The COMPILEEND procedure

would then execute

EMITINSTRUCTION(JUMP,WHILESTART);
MEMORY IWHILEJUMP] INSTRUCTIONPOINTER;

This generates a JUMP to the start of the loop and then corrects
the JUMP instruction at the beginning of the loop to transfer
control beyond the just generated JUMP instruction.

Things are not this simple in PPS/3, because WHILE loops can
be nested inside WHILE loops. Whenever our compiler encounters
the END of a loop, it must match it with the nearest preceding
WHILE. It needs to keep track of the locations of the WHILES on
a last-in-first-out basis. The last encountered WHILE is the
next one to be matched with an END. Once the compiler matches a
WHILE to an END and produces the appropriate JUMPS, it can

discard the location of that WHILE.

We need a data structure that allows us to save the locations
of WHILES until they are needed. What we need is a stack, as was
described in Chapter 17. We can establish a stack by the

declaration

CONST MAXWHILEDEPTH-20,
VAR STACK: ARRAY[1 ..MAXWHILEDEPTH1 OF INTEGER;

STACKTOP: 0..MAXWHILEDEPTH;

We Will initialize STACKTOP to zero to indicate that the stack is

empty.

Before the COMPILEWHILE procedure generates any instructions,
it places the value of the INSTRUCTIONPOINTER on top of the
stack. Just before it generates the JUMP instruction that
transfers control beyond the end of the loop, it places the value

318 Programming Language Compilers

of INSTRUCTIONPOINTER+1 on top of the stack. The COMPILEEND
procedure uses these stacked locations in this way;

(* CORRECT OPERAND OF JUMP AT BEGINNING OF LOOP *)
MEMORY[STACK[STACKTOP]]:-INSTRUCTIONPOINTER+2;
STACKTOP:-STACKTOP-1;
(* EMIT JUMP TO GO BACK TO BEGINNING OF LOOP ♦)
EMITINSTRUCTION(JUMP,STACK[STACKTOP]);
STACKTOP:-STACKTOP-1;

Before executing these statements, the COMPILEEND procedure
checks to see if the stack is empty. If it is empty, this
indicates that the END does not correspond to a WHILE. Instead,
it is the final END of the PPS/3 program, and a HALT instruction
is generated.

THE COMPILER

We have now described the modules of our compiler. We can
these modules together to make a procedure that compiles

PPS/3 programs. Our compiler has this overall structure:

PROCEDURE COMPILER;

(declare the named constants FIRSTVARIABLE, TEMPORARY, FIRSTDIGIT
MAXWHILEDEPTH and CARDSIZE)

(declare the type CARDTYPE)

(declare the variables INSTRUCTIONPOINTER, STRINGNUMBER,
LENGTH, POS, I, STACK, STACKTOP,
CARD, BLANKS, NEXTWORD, NEXTCHAR and ALPHABET)

(declare the procedure READANDPRINTCARD)
(declare the scanner procedures SCANWORD, SCANCHAR

and SCANNONBLANKCHAR)
(declare the procedure EMITINSTRUCTION)
(declare the procedures COMPILEVARIABLE, COMPILEVALUE,

COMPILEEXPRESSION, COMPILEWRITELN,
COMPILEASSIGNMENT, COMPILEWHILE and COMPILEEND)

BEGIN

Initialize INSTRUCTIONPOINTER, STRINGNUMBER and STACKTOP;
Initialize BLANKS and ALPHABET;
Initialize constants 0 to 9 in MEMORY;
Read and print four cards (%JOB, PROGRAM T..., VAR..., BEGIN)
Read and print another card;
WHILE card!1]<>'%' DO

BEGIN
SCANWORD;

Call appropriate procedure among
COMPILEWRITELN,COMPILEASSIGNMENT,
COMPILEWHILE and COMPILEEND;

Read and print a card
END

END;

The Compiler 319

Our compiler must have access to arrays representing the
regular and string memory of the VS computer. These arrays can
be declared to be global to the compiler procedure via

CONST MEMORYSIZE-99;
STRINGSIZE-80;
NUMBEROFSTRINGS-10;

VAR MEMORY: ARRAY[0..MEMORYSIZE] OF INTEGER;
STRING: ARRAY[1..NUMBEROFSTRINGS) OF

PACKED ARRAYl1..STRINGSIZE] OF CHAR;

As we have explained, our compiler uses the words in the VS

computer's memory as follows:

Locations 0 to 50 - used for instructions.
Locations 51 to 76 - used for variables A to Z.
Location 80 - used for TEMPORARY (saves the value of the left

expression in a comparison).
Locations 90 to 99 - used for constants 0 to 9.

We use named constants to record this layout of memory:

FIRSTINSTRUCTION-0;
FIRSTVARIABLE-51;
TEMPORARY-80;
FIRSTDIGIT-90;

And each of the VS instructions are named:

LOAD-1;
STORE-2;

HALT-9;

We put all
procedure that
language:

the parts
translates

together and we have a complete
PPS/3 programs into VS machine

(♦ THIS PROCEDURE COMPILES A
PROCEDURE COMPILER;

CONST FIRSTVARIABLE-51;
TEMPORARY-80;
FIRSTDIGIT-90;
MAXWHILEDEPTH-20;
CARDSIZE-81;

CORRECT PPS/3 PROGRAM *)

(* Where A,B,...,Z BEGIN *)
(♦ HOLDS EXPRESSIONS TEMPORARILY *)
(★ WHERE 0,1,..., 9 BEGIN *)
(* MAXIMUM NESTING OF LOOPS *)
(♦ MAX INPUT LINE LENGTH IS 80 *)
(* THE 81-ST IS A DUMMY FOR EOLN *)

TYPE CARDTYPE-PACKED ARRAY [1..CARDSIZE1 OF CHAR;
VAR INSTRUCTIONPOINTER: 0..MEMORYSIZE;

STRINGNUMBER: 0..NUMBEROFSTRINGS; (* INITIALLY 0 *)
LENGTH: 0..CARDSIZE; (* IDENTIFIER OR KEYWORD LENGTH ♦)
POS: INTEGER; (* POSITION ON CARD AFTER NEXTCHAR ♦)
I: INTEGER; (* INDEX USED DURING INITIALIZATION *)

STACKTOP: INTEGER;
STACK: ARRAYl1..MAXWHILEDEPTH] OF 0..MEMORYSIZE;

CARD,BLANKS,NEXTWORD: CARDTYPE;

320 Programming Language Compilers

NEXTCHAR: CHAR;

ALPHABET: ARRAY! 1.. 26] OF CHAR; (♦ MAPS 'A'..'Z' TO *)

(* INTEGERS *)

PROCEDURE READANDPRINTCARD;
VAR I: O..CARDSIZE;
BEGIN

CARD:-BLANKS;
I : -0 ;
WHILE NOT EOLN DO

BEGIN
I : -1+1 ;
READ(card!I])

END;
READLN;
POS;-1 ;
WRITELN(CARD);

card!1+1 ' (♦ MARK EOLN SO SCANNONBLANK STOPS *)
END ;

PROCEDURE SCANWORD;
BEGIN

NEXTWORD:-BLANKS;
LENG^TH: -0 ;
WHILE CARD!P0S]-' ' DO

POS:-POS+1;

WHILE(CARD!POS]>-'A') AND (CARD!POS1Z') DO
BEGIN

LENGTH:-LENGTH+1;
NEXTWORD!LENGTH]:-CARD!POS];
POS:-POS+1

END
END ;

PROCEDURE SCANCHAR;
BEGIN

NEXTCHAR:-CARD!POSI;
POS:-POS+1

END;

PROCEDURE SCANNONBLANKCHAR;
BEGIN

SCANCHAR;
WHILE NEXTCHAR-' ' DO

SCANCHAR
END;

(* PUT AN INSTRUCTION INTO THE MEMORY *)

PROCEDURE EMITINSTRUCTION(OPERATOR,OPERAND: INTEGER)*
BEGIN

MEMORY!INSTRUCTIONPOINTER]:-OPERATOR;
MEMORY!INSTRUCTIONPOINTER+1]:-OPERAND;
INSTRUCTIONPOINTER:-INSTRUCTIONPOINTER+2

END ;

(* FOR IDENTIFIERS A TO Z, THIS WILL RETURN 51 TO 76, ♦)

The Compiler 321

(* RESPECTIVELY, ASSUMING FIRSTVARIABLE-51 *)
FUNCTION COMPILEVARIABLE(LETTER;CHAR): INTEGER;

VAR J; 1..26;
BEGIN

J : - 1 ;
WHILE alphabet! J]<:>LETTER DO

J: -J+1 ;
COMPILEVARIABLE:"FIRSTVARIABLE+J-1

END ;

(* FIND MEMORY LOCATION OF NEXT VARIABLE OR INTEGER ON *)

(* CARD *)
FUNCTION COMPILEVALUE: INTEGER;

VAR LOCATION; 0..MEMORYSIZE;
BEGIN

IF(NEXTCHAR>-'A') AND (NEXTCHAR<-'Z')THEN
LOCATION;-COMPILEVARIABLE(NEXTCHAR)

ELSE (* VALUES 0,1,... 9 START IN LOCATION FIRSTDIGIT *)
LOCATION;»ORD(NEXTCHAR)-ORD('0')+FIRSTDIGIT;
(* ASSUMES CONTIGUOUS ASCENDING DIGIT VALUES *)

COMPILEVALUE;-LOCATION
END;

(♦ GENERATE CODE FOR NEXT EXPRESSION ON CARD *)
PROCEDURE COMPILEEXPRESSION;

VAR PLUSMINUS; CHAR;
BEGIN

EMITINSTRUCTION(LOAD,COMPILEVALUE);
SCANNONBLANKCHAR;
WHILE(NEXTCHAR-'+')OR(NEXTCHAR-'-') DO

BEGIN
PLUSMINUS;-NEXTCHAR;
SCANNONBLANKCHAR;
IF PLUSMINUS-'+' THEN

EMITINSTRUCTION(ADD,COMPILEVALUE)

ELSE
EMITINSTRUCTION(SUBTRACT,COMPILEVALUE);

SCANNONBLANKCHAR

END
END;

PROCEDURE COMPILEWRITELN;
CONST QUOTE-'''';
VAR POSITION;1..CARDSIZE;

BEGIN
(* SKIP '(' AND FIND START OF EXPRESSION *)
SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
(♦ SEE IF NEXT CHARACTER IS A QUOTE *)
IF NEXTCHAR-QUOTE THEN

BEGIN
STRINGNUMBER;-STRINGNUMBER+1;
FOR POSITION;-1 TO STRINGSIZE DO

STRING[STRINGNUMBER1[POSITION];-' ';

SCANCHAR;
POSITION;- 1 ;

322 Programming Language Compilers

WHILE NEXTCHAROQUOTE DO
BEGIN

STRING[STRINGNUMBER][POSITION]:-NEXTCHAR;
POSITION:-POSITION+1;
SCANCHAR

END;
EMITINSTRUCTION(PUTSTRING,STRINGNUMBER)

END
ELSE

BEGIN
COMPILEEXPRESSION;
EMITINSTRUCTION(PUTINTEGER,0)

END
END;

PROCEDURE COMPILEASSIGNMENT;
(* SKIP AND FIND START OF EXPRESSION *)
BEGIN

SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
COMPILEEXPRESSION;
EMITINSTRUCTION(STORE,COMPILEVARIABLE(NEXTWORD[1]))

END;

PROCEDURE COMPILEWHILE;
BEGIN

SCANNONBLANKCHAR; (* FIND START OF LEFT EXPRESSION *)
(* RECORD LOCATION OF BEGINNING OF LOOP ON TOP OF STACK *)
STACKTOP:-STACKTOP+1;
STACK[STACKTOP]:-INSTRUCTIONPOINTER;
COMPILEEXPRESSION;
EMITINSTRUCTION(STORE,TEMPORARY);
(* SKIP OVER *)
SCANNONBLANKCHAR;
SCANNONBLANKCHAR;
COMPILEEXPRESSION;
EMITINSTRUCTION(SKIPLE,TEMPORARY);
(* RECORD JUMP LOCATION SO ITS OPERAND CAN BE CORRECTED ♦)
STACKTOP:-STACKTOP+ 1 ;
STACK[STACKTOP1 :-INSTRUCTIONPOINTER+ 1 ;
EMITINSTRUCTION(JUMP,0)

END ;

Running the Compiled Program 323

PROCEDURE COMPILEEND;

(* SEE IF STACK HOLDS LOCATION OF 1 OR MORE WHILE'S *)

BEGIN

IF STACKTOP>0 THEN

BEGIN

(* CORRECT OPERAND OF JUMP AT BEGINNING OF LOOP *)

MEMORY[stack!STACKTOP1]:-INSTRUCTIONPOINTER+2;

STACKTOP:-STACKTOP-1;

(* EMIT JUMP TO GO BACK TO BEGINNING OF LOOP. *)

EMITINSTRUCTION(JUMP,stack!STACKTOP]);

STACKTOP:-STACKTOP-1

END

ELSE

(* THIS IS THE FINAL 'END' OF THE PPS/3 PROGRAM *)

EMITINSTRUCTION(HALT,0)

END;

(* BODY OF PROCEDURE THAT COMPILES PPS/3 PROGRAMS *)

BEGIN

FOR I:-1 TO CARDSIZE DO

BLANKS!I] :-' ' ;
ALPHABET;-'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

FOR I:-0 TO 9 DO (* INITIALIZE CONSTANTS 0 TO 9 *)

memory!FIRSTDIGIT+I]:-I;

(* INITIALIZE INSTRUCTIONPOINTER, STRINGNUMBER, STACKTOP ♦)

INSTRUCTIONPOINTER:-0;

STRINGNUMBER:-0;

STACKTOP:-0;

(* SKIP %JOB, PROGRAM T..., VAR... AND BEGIN *)

READANDPRINTCARD;

READANDPRINTCARD;

READANDPRINTCARD;

READANDPRINTCARD;

(★ GET FIRST CARD TO BE COMPILED ♦)

READANDPRINTCARD;

WHILE card!1]<>'%' DO

BEGIN

SCANWORD;

CASE LENGTH OF

7:COMPILEWRITELN;

1:COMPILEASSIGNMENT;

5:IF NEXTWORD!11-'W' THEN

COMPILEWHILE;

3:COMPILEEND

END;

READANDPRINTCARD

END

END (* OF COMPILER *);

RUNNING THE COMPILED PROGRAM

We can have a PPS/3 program executed by translating it using

our compiler, and then placing the machine language version of

324 Programming Language Compilers

our program in the memory of

circuitry of the VS computer

instructions corresponding to our

a VS computer. The electronic

would carry out the machine
program.

Unfortunately, we do not have a VS computer. But we do have

a simulator for VS machine language, which we developed in the

last chapter, and we could use it to execute our translated PPS/3

program. This is accomplished by the following job, which both
compiles and executes a PPS/3 program:

$JOB 'MARG KIMBALL'

(* COMPILE AND EXECUTE A PPS/3 PROGRAM *)

PROGRAM RUNPPS3 (INPUT,OUTPUT);

CONST MEMORYSIZE-99;

STRINGSIZE-80;

NUMBEROFSTRINGS-10;

FIRSTINSTRUCTION-0; (* WHERE EXECUTION BEGINS *)
LOAD-1;

STORE-2 ;

ADD-3 ;

SUBTRACT-4;

JUMP-5;

SKIPLE-6;

PUTINTEGER-7;

PUTSTRING-8;
HALT-9;

VAR MEMORY: ARRAY[0..MEMORYSIZE] OF INTEGER;

STRING: ARRAY[1..NUMBEROFSTRINGS] OF

PACKED array!1..STRINGSIZE] OF CHAR;
PROCEDURE COMPILER;

(PPS/3 compiler as given in this chapter)
END;

PROCEDURE SIMULATOR;

(simulator for VS computer as given in last chapter)
END ;

BEGIN

COMPILER;

SIMULATOR
END.

SDAT-A

%JOB

PROGRAM T (INPUT,OUTPUT);
VAR I: INTEGER;

BEGIN

WRITELN(' POWERS OF 2');
I:-1 ;
WHILE I<-8 DO

BEGIN

WRITELN(I);
I : -1 +1

END
END.

%DATA

If you want to run

program has no errors.
a PPS/3 program, ma}ce sure that your PPS/3

Remember, the compiler was simplified by

Chapter 22 Summary 325

ignoring the possibility of errors; it may fail miserably if it
encounters a syntax error in a PPS/3 program.

CHAPTER 22 SUMMARY

In this chapter we showed how a program, called a compiler,
can translate from a high-level language like Pascal to machine
language. A simple language called PPS/3 was defined to
illustrate points about syntax, language specification and
translation. We presented a compiler written in Pascal that
translates error-free PPS/3 programs to the machine language for
the VS computer described in the last chapter. If this compiler
is combined with the VS computer simulator given in the last
chapter, we have a program that compiles and executes PPS/3
programs. The following important terms were discussed in this
chapter:

Syntax (or grammar) - a set of rules that specify the legal
forms of programs in a particular programming language.

Non-terminal symbol - a symbol such as "statement" used in
syntax rules to represent a set of possibilities. Non¬
terminal symbols do not appear in the final program.

Terminal symbol - a symbol such as "PROGRAM", ";"
appears in the final program.

or "I" that

Producing a program - using the syntax rules to
program by successively replacing non-terminal
until only terminal symbols remain.

create a
symbols

Recursive definition - defining a term in a way that uses the
term. For example, in PPS/3 a WHILE loop is defined
recursively as a statement with the form

WHILE expression<"expression DO
BEGIN

statement!; statement I

END

This is recursive because a statement inside a WHILE
loop can be a WHILE loop.

Stack - a data structure providing last-in-first-out
manipulation of data, as described in Chapter 17.
Stacks are used in compilers for keeping track of nested
structures, including WHILE loops and parenthesized
expressions.

326 Programming Language Compilers

CHAPTER 22 EXERCISES

1 . The PPS/3 compiler given in this chapter requires the

following seven types of lines to be on separate cards:

(1) PROGRAM T (INPUT,OUTPUT);

(2) VAR ...: INTEGER;

(3) WRITELN(...)

(4) WHILE..DO

(5) END

(6) variable:-expression

(7) BEGIN

Modify the PPS/3 compiler so that more than one of these can

appear on a card.

2. Modify the

attempt to use

example, the fo

line 5 when the

PPS/3 compiler

an uninitializ

llowing job shou

uninitialized va

a nd VS simul

ed va riable i s

Id be stopped by

lue of J is acce

tor so that any

detected. For

the simulator in

sed.

1 % JOB

2 PROGRAM T (INPUT,OUTPUT);

3 VAR I,J: INTEGER;

4 BEGIN

5 I:-J;

6 WRITELN(I)

7 END.

8 %DATA

The use of an

following manner,

values of all vari

When the simulator

see if the loaded

and an error messa

uninitiali

Before

ables are

executes

value is

ge is prin

zed variable can be d

the program begins e

set to some special val

the LOAD instruction,

99999. If so, the prog

ted.

etected in the

xecution, the

ue, say 99999.

it checks to

ram is stopped

3. Modify the PPS/3 compiler as given in this chapter so that it

prints an error message if a variable is used but not declared.

This can be done in the following manner. A Boolean array having

26 elements is declared and initialized so that all elements are

FALSE. When the compiler reads the declaration, the elements of

the array corresponding to declared variables are set from FALSE

to TRUE. Whenever a variable is encountered in the remainder of

the PPS/3 program, a check is made to see if the corresponding

array element is FALSE or TRUE. If it is FALSE, an error message
is printed.

4. The compiler given in this chapter was mad

omitting certain checks. The absence of these checks

very poor for handling actual programs. Improve it t

following problems gracefully.

(a) If the generated code requires more than 5

instructions overlap with the variables.

e simpler by

makes it is

o handle the

0 words, the

Chapter 22 Exercises 327

(b) If WHILE loops are nested to a depth of greater than

MAXWHILEDEPTH, the compiler fails to work properly

(c) If a string is missing its right quote, the compiler runs
off the end of a card.

(d) If an input line is longer than 80 characters, perhaps it

was typed on a terminal, the compiler makes an error.

(e) If the PPS/3 program contains more than 10 literals, the
compiler makes an error.

5. There is no limit on the amount of execution time for a PPS/3

program. Modify the simulator to stop a program when it executes

too many instructions.

6. The compiler given in this chapter can be made

smaller by using a recursive procedure that compiles a

statement (BEGIN ... END).

a little

compound

The procedure can have the form:

PROCEDURE COMPILEBEGIN;

(Declare here procedures to compile

WRITELN,ASSIGNMENT and WHILE)

BEGIN

compile the statements WRITELN,

ASSIGNMENT and WHILE until END is found

END;

The procedure to compile WHILE will call COMPILEBEGIN to handle

statements within the loop. Since the procedure to compile WHILE

is recursive, it gets new copies of local variables which can

hold locations of jumps to be corrected from the loop beginning.

This means that the stack previously used to record these

locations is no longer needed.

•» ryi <1*.

. »:t It.

f tt«C

ii

♦ > ‘

- .«><«i%iu- ■
»» -nt »tPi4 .

Ml
* '■»■*•• ^ ' «|| *.

‘Al. ."i:.* •. i
^ >L'. !r M

•# la

- tflm 4t

•' • -, , .* n-

> ' t *■ ■• :. J| * .

' •>! « i-* i • ; .• 5

(MlfT *1

• *^•§0*11

XnMl H«J

•S'li

» 4 • •4? •" «> . I :rrr.«> atff .»

• r'5%';. j T■‘.fit

• *< ■< !*■.; i .ti \p A%->
• yi ■ r

. • 4 '- '

*l • 2*f ■ i'

• «5j»r^ j; 1® tnhp® „

*«tni
- int.; riiiiflQ®;

«ants I

'N

ij|5.r ,4

♦*. • •.'

* 1“^ I ^ r;. ' ••*

' . •» ■) : 11 : - ■• C-5 ;< ■
• •t';*

4-1^ V ■A ,

«4B1
r r.riw

b' » ,

Vi'>^

I v"t . „• *i

.N-i* *

: J

■ '»t ^*1

i: •■^ .
»•••«%» Lf^

4 « f ft

k #r^.

t '•
■-“ %P ‘

W rf • •

{ -Ml ft« ■
V-^ '

*■ " W »■

■r --

I.

0 L t ^
» • ■■• ,

*• t ^ -v j > - •

• l •

:!»•
• . •» * 'f

1
!

i ^ * r 4 . • . ♦ • aci

■■■ , Uii f5w

Appendix 1

SPECIFICATIONS FOR

THE PS/k LANGUAGE

PS/k is a sequence of subsets of the Pascal language that has

been developed for the purpose of teaching computer programming.

PS/k is based on the SP/k subsets of PL/1 designed at the

University of Toronto, and this appendix is an adaption of a

technical report by Richard C. Holt and David B. Wortman for the

SP/k subset.

Since PS/k is a compatible subset of Pascal, PS/k programs

can be run under any compiler that supports Standard Pascal as

defined by Jensen and Wirth in the "Pascal User Manual and

Report".

In the interest of making Pascal more suitable for pedagogic

purposes, PS/k restricts or eliminates some Pascal features. The

following features are eliminated: GOTO statements, sets

(powersets), variant records and subprograms as parameters.

We will specify PS/k by giving a list of included features.

Language features introduced by subsets PS/1 to PS/8 are

summarized in the following table.

Subset Features Introduced

PS/l Characters: letters, digits and special characters

Constants: integer, real and character string

Expressions: +, -, *, /, div, mod, trunc, round

Simple output: write, writeln

Predeclared functions: abs, sin, cos,

arctan. In, exp, sqrt.

PS/2 Identifiers and variables

Declarations: integer and real

Assignment statements (with integer to real conversion)

Simple input: read

Real to integer conversion: trunc, round

329

330 Appendix I

PS/3

PS/4

PS/5

PS/6

PS/7

Comparisons: <, >, ■, <■, >■, <>
Logical expressions: AND, OR, and NOT

Selection: if-then-else, case

Repetition: while, repeat and for loops

Paragraphing

Boolean variables and constants

Type definitions

Arrays (including multiple dimensions)

Subranges

Named types

Characters and strings

Character string comparison

Enumerated types

Predeclared functions: eof, eoln, ord, chr, succ, pred

Procedures

Calling and

Actual and

Global and

Arrays and

and functions

returning

formal parameters

local variables

character strings as parameters

Records

Files with read, write and eof

PS/8 Pointers

Dynamic allocation: new and dispose

File buffers

The following sections give detailed specifications for each

subset. In describing the subsets, we will use this notation:

[item] means the item is optional

litemi means the item can appear zero or more times

Note that square brackets are used around the index of an array

in the language itself and here are used as non-terminal symbols

to indicate that an item is optional. You will just have to try

not to confuse these two uses as we have run out of different

kinds of brackets. Sometimes we call a non-terminal symbol a

meta-symbol. A meta-symbol is part of the meta-language which is

used to describe the syntax of the actual language, which in our

case is PS/k. When presenting the syntax of language constructs,

items written in upper case letters, for example,

PROGRAM

denote keywords; these items must appear in PS/k jobs exactly as

presented. Items written in 1ower case letters, for example,

statement

denote one of a class of constructs; each such item is defined
below as it is introduced.

Specifications for the PS/k Language 331

PS/1: EXPRESSIONS AND OUTPUT

We now begin the specification of the first subset,

A character is a letter or a digit or a special character.

A letter is one of the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghi jklmnopqrstuvwxyz

Some implementations do not have lower case letters.

A digit is one of the following;

0123456789

A special character is one of the following:

+ -*/()-<>. ; ; , []|1 i ? %

b (blank)

' (apostrophe or single quote)

Implementations may make the following substitutions for these

special characters;

[becomes (.

1 becomes .)

I becomes (*

I becomes *)

t becomes 3

Some implementations may not have all these special characters or

may have additional special characters.

An unsigned integer is one or more digits (without embedded

blanks), for example:

4 19 243 92153

An unsigned real can take two forms. One form consists of two or

more digits with a decimal point. At least one digit, which may

be 0, must precede and must follow the decimal point. The other

form consists of a mantissa followed by an exponent part (without

embedded blanks). The mantissa must be one or more digits with

an optional decimal point. If there is a decimal point, at least

one digit must precede it and follow it. The exponent part must

have the letter E, followed by an optional plus or minus sign

followed by one or more digits. The following are examples of

real constants.

5.16 50E0 0.9418E24 1.OE-2

332 Appendix I

An unsigned number is an unsigned integer or an unsigned real.

Unsigned numbers cannot contain blanks and cannot be split across

1ines (cards) .

A 1iteral (or character string) is a single quote (an

apostrophe), followed by one or more occurrences of non-single¬

quote characters or twice repeated single quotes, followed by a

single quote. The following are examples of literals:

'FRED' 'X-24' 'MR. O''REILLY'

In PS/l, an expression is one of the following:

unsigned integer

unsigned real

literal

+expression

-expression

expression + expression

expression - expression

expression * expression

expression / expression

expression DIV expression

expression MOD expression

(expression)

predeclared function designator

Real and integer values may be combined in expressions. When

an integer value is combined with a real value using +, - or ♦
the result is a real value. Two integers combined with +, - or *

yield an integer result.

The / operation can have real and integer operands and always

returns a real result. The DIV and MOD operations must have

integer operands. DIV produces an integer result, which is

division with truncation toward zero. MOD produces an integer

result which is the remainder of the DIV operation.

Evaluation of expressions proceeds from left to right, with

the exceptions that multiplications and divisions have higher

precedence than (i.e., are evaluated before) additions and

subtractions and that parenthesized sub-expressions are evaluated

before being used in arithmetic operations. The following are
examples of legal expressions.

-4 + 20 2 + 8.5E + 00 (4.OE + 01-12.OE + 0 1)/-2

The values of these three expressions are, respectively, 16,
17.0E+00, and 4.0E+01.

Character strings cannot be used in arithmetic operations.

A PS/1 predeclared function designator is one of the following:

ABS(expression)

Specifications for the PS/k Language 333

SQR(expression)

SIN(expression)

COS(expression)

ARCTAN(expression)

LN(expression)

EXP(expression)

SQRT(expression)

ROUND(expression)

TRUNC(expression)

The ABS, SQR, SIN, COS, ARCTAN, LN, EXP, and SQRT

mathematical functions accept a single integer or real expression

as an argument and except for ABS and SQR produce a real result.

For ABS and SQR the result has the same type as the parameter.

ROUND and TRUNC accept a real expression and produce an integer

result. Appendix 3 gives a more detailed description of PS/k

predeclared functions.

A PS/1 statement is one of the following:

WRITE(output-item I,output-item 1)

WRITELN[(output-item I,output-item I)]

PAGE

A PS/l program is: PROGRAM identifier (INPUT,OUTPUT);

BEGIN

statement I;statement!

END.

Remember that the notation litem! means optional repeats, so

statement t;statement! means one or more statements separated by

semicolons. The following is an example of a PS/l program:

PROGRAM DEMO (INPUT,OUTPUT);

BEGIN

WRITELN(2, ' PLUS', 3, ' MAKES’, 2+3)

END.

The output from this example is: 2 PLUS 3 MAKES 5

Each output-expression is one of the following:

(a) e

(b) e:width

(c) e:width:fractional digits (only for REAL value "e")

where "e" is an expression value to be printed and "width" is the

field width to hold the printed value.

If e is a literal (string) and the width is not given, then

the width is taken to be the number of characters in the string.

If the width is given then the printed item is the string value

padded with blanks on the left to the specified width.

If e is an integer value then it is printed right-justified

in a field of "width" characters. If width is not given then the

334 Appendix /

field width depends on the implementation, but a width of 10 is
typical.

If e is a REAL value then it is printed right-justified in a
field of "width" characters, where the default width is
implementation dependent, but 22 is typical. Forms (a) and (b)
cause the REAL value to be printed with its exponent value. Form
(c) causes printing without the exponent in fixed point form; for
example, 1.7324E1:6:2 causes this to be printed: b17.32.

There will be a slight difference in the handling of certain
aspects of the PS/1 subset by different implementations. The
maximum number of characters on a print line may be as small, say
as 72, or as large, say as 136. The maximum magnitude of
integers depends on the implementation but is usually at least
32767, which is common for minicomputers and microcomputers. The
maximum magnitude of real numbers depends on the implementation,
but is probably at least 1E36. The maximum number of digits in
the mantissa of a real number depends on the implementation, but
is probably at least 6 even for microcomputers. Some
implementations notably Pascal 6000, use the first character of
each printed line for carriage control; for such systems, the
first character of each line can be a blank.

PAGE starts a new page in the output.

Specifications for the PS/k Language 335

PS/2: VARIABLES, CONSTANTS, INPUT AND ASSIGNMENT

We now begin the specifications of the second subset, PS/2.

An identifier is a'letter followed by letters or digits. An
identifier cannot contain embedded blanks. Some compilers use
only the first eight characters of each identifier (or more
depending on the compiler). With these compilers, identifiers
can be longer than eight characters, but characters after the
first eight are ignored. Identifiers cannot contain blanks and
cannot be split across lines (cards).

An identifier cannot be the same as one of the Pascal
keywords:

.AND END NIL SET
ARRAY FILE NOT THEN
BEGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO PACKED UNTIL
DIV IF PROCEDURE VAR
DO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
ELSE MOD REPEAT

Predeclared identifiers including REAL, INTEGER and
redeclared to have new meanings, but this is poor
style which causes confusion.

WRITE can be
programming

A PS/2 program is: PROGRAM identifier (INPUT,OUTPUT);
(constant declaration]
[variable declaration]
BEGIN

statement Ijstatement!
END.

A

A

A

A

constant declaration is: CONST identifier - constant;
{identifier ■ constant;!

variable declaration is: VAR identifier I,identifier! : type;
{identifier {, ident i f ier ! : type;!

type is one of the following:
INTEGER
REAL

statement is one of the following:
WRITE(output-item {,output-item!)
WRITELN[(output-item {,output-item!)]
PAGE
variable :■ expression
READ(variable {,variable!)

336 Appendix I

An identifier declared using the CONST construct is a named
constant. It takes the value of the constant which must be a
literal (string) or an optionally signed value, The value is an
unsigned number or a named constant representing a number.

An identifier declared using the VAR construct is a variable.
(There are no arrays in PS/2.)

In Pascal all variables must be declared.

In PS/2 an
constants.

expression may contain variables as well as

Real values
integer variables
values in order
either the ROUND
assigned to o
conversion.

may not
Real

to be
or TRUNC
r read

be directly assigned to or
values may be converted t
assigned to integer variable
functions. Integer value

into real variables with

read into
o integer
s by using
s may be
automatic

In PS/2 each item in the data
READ statement must be an unsigned
+ or -. Consecutive items must be
lines (cards). One number is read
statement.

(the input stream) read by the
number optionally preceded by
separated by blanks or ends of
for each item in the READ

Any number (real or integer) can be read (and will be
automatically converted if necessary) into a real variable. Only
an integer can be read into an integer variable.

Any number of blanks and line (card) ends can appear between
symbols, e.g., between constants, keywords, identifiers,
operators +, -, *, / and the parentheses (and). When
constants, keywords or identifiers are adjacent, for example, the
adjacent keywords WHILE and NOT, they must be separated by at
least one blank or end of line (card).

comment consists of the characters roiiowea oy any
the characters characters except the combination *) followed by

*). A blank cannot appear between the (and * or between the *
and). Comments can appear wherever blanks can appear. In
general, it is good practice for comments to appear on separate
lines or at the ends of lines. Comments cannot appear in the
data. Some compilers allow braces I...I to enclose comments as
well as the convention (*...*) used in this book.

Specifications for the PS/k Language 337

PS/3: LOGICAL EXPRESSIONS, SELECTION AND REPETITION

A condition is one of the following:

TRUE
FALSE

NOT condition
condition AND condition
condition OR condition

comparison
(condition)

Boolean variable

A condition is sometimes called a BOOLEAN expression.

A comparison is one of the following:

expression < expression
expression > expression
expression ■ expression
expression <■ expression
expression >» expression
expression O expression (<> means "not equal to")

A PS/3 type is one of the following:

INTEGER
REAL
BOOLEAN

Variables declared to have the BOOLEAN type are called
BOOLEAN variables. BOOLEAN variables can be operands in the
logical operations of AND, OR and NOT. Real or integer values
cannot be operands in logical operations. The AND operator has
higher priority than the OR operator. Boolean variables can be
compared, assigned and printed. Boolean values cannot
participate in numeric operations. They cannot be read in but

can be written out.

The operations are evaluated in order according to these four

precedence classes:

first: NOT
second; * / DIV MOD AND
third: + - OR
fourth; ■<>>■<■ <>

Operations in the same class
right. Parenthesized subexpressions

are evaluated from left to
are evaluated first.

Unfortunately, the Boolean operations (AND, OR,' NOT) have
higher precedence than comparisons, so comparisons should be
parenthesized when Boolean operations are involved, as in

338 Appendix /

IF AND (J<-12) THEN...

A PS/3 statement is one of the following:

WRITE(expression 1,expression 1)
WRITELNl(expression I,express ion 1)]
PAGE
variable :■ expression
READ(variable Invariable!)

IF condition THEN
statement

[ELSE
statement]

WHILE condition DO
statement

FOR identifier expression TO expression DO
statement

FOR identifier ;■ expression DOWNTO expression DO
statement

BEGIN
statement I; statement I

END

CASE expression OF
case-labeli, case-label I : statement

Ijcase-labell, case-label I : statement I
END

If a list of statements is wanted
clause or as the body of a loop, these
BEGIN...END. The list of statements
separated by semicolons. Note that THEN,
are not followed by semicolons.

in a THEN, ELSE or CASE
must be enclosed in

inside BEGIN...END are
ELSE, DO, BEGIN and OF

Each label for a case statement
integer constant; this constant can
CONST. (In a later subset, PS/5, c
have character or enumerated-type la
CASE statement must evaluate to one
the meaning of the case statement
implementation).

must be an
be an identi
ase labels w
bels.) The e
of the case
depends on

optionally signed
fier defined as a
ill be allowed to
xpression in the
labels (otherwise

the particular

In the FOR loop, the index variable (identifier) must have
been declared as an integer variable. Each expression is
evaluated once before execution of the loop begins. The body
(statement) of the loop is executed once for each value in the
range defined by the two expressions in increasing order for TO
and decreasing order for DOWNTO. There are zero repetitions if
the first expression exceeds the last for TO (or the last exceeds

Specifications for the PS/k Language 239

the first for DOWNTO). (In a later subset,
variables are allowed to be of character
The value of the index variable must not be
loop's execution. After the execution of
the index variable should not be used (the
depends on the particular implementation).

PS/5, FOR
or enumer

changed
the loop

remaining

loop index
ated types.)
during the

the value of
value if any

The following is an example of a PS/3 program.

PROGRAM PS3 (INPUT,OUTPUT);
VAR N,X,TOTAL; INTEGER;
BEGIN

TOTAL:"0;
READ(N);
WHILE N>0 DO

BEGIN
READ(X);
TOTAL;-TOTAL+X;
N:-N-1

END ;
WRITELN(' TOTAL IS',TOTAL)

END.

Paragraphing rules are standard conventions for indenting
program lines. Some compilers provide automatic paragraphing of
programs. If this feature is available, it should be used.

A set of paragraphing rules can be inferred from the method

used to present PS/]c constructs.

Comments
same level
continuation
the line's o
becomes too
rules tempor

(

r

a

that are on separate li
as their correspond
s) of a long program 1
iginal indentation. If
deep, it may be nec

rily, maintaining a ver

nes should be indented to the
ing program lines. The
ine should be indented beyond

the level of indentation
essary to abandon
tical positioning

indentation
of lines.

340 Appendix /

PS/4: ARRAYS, SUBRANGES AND NAMED TYPES

Named types (type identifiers) can be defined following the
keyword TYPE in an expanded definition of "program".

A PS/4 program is: PROGRAM identifier(INPUT,OUTPUT);
[constant declaration]
[type declaration]
[variable declaration]
BEGIN

statement!; statement I
END.

A type declaration is: TYPE identifier-type;

iidenti f ier-type ; I

Each declared identifier in a type declaration names a type.

The definition of "type" is expanded to include arrays,
subranges and named types (type identifiers).

A type is one of the following:

INTEGER
REAL
BOOLEAN
type-identifier

constant..constant (subrange type)
ARRAY [type!, type 1] OF type

A type-identifier is an identifier declare
type declaration.

A subrange type has the form constant.
®3ch constant is an optionally signed value,
unsigned integer or a named constant that
(In PS/5, subranges are expanded to allow
characters, Booleans and enumerated values.)

An array type has the form ARRAY[type!, type I] OF type. The
square brackets here are special symbols that must appear in the
Pascal program; they are not meta brackets. The type appearing
in brackets must be a subrange type (possibly named). The type
appearing after OF can be any type including an array.

An element of an array A is referred to as
A[expression!,expression I] where the square brackets are Pascal
special symbols. Each expression must be within the subrange of
the corresponding type in the array's type definition.

Entire arrays may be assigned, but comparison, reading and
writing are only possible element by element.

name a type in a

tant. For PS/4,
value being an

has an integer value,
constants that are

Specifications for the PS/k Language 341

PS/5: CHARACTERS, ENUMERATED TYPES AND STRINGS

The definition of "type" is expanded to include:

CHAR
(identifierl,identifier1) (enumerated type)
PACKED ARRAY[type] OF type

The predeclared type CHAR is introduced. A CHAR variable has
as its values a character (a letter, digit or special character).
Such a value is written as a literal string containing a single
character, that is, a single quote, followed by the character,
followed by another single quote, for example 'A'. If the
character value is a quote, it is written a four quotes, namely
''''. CHAR values can be compared and assigned.

Each CHAR value C has a unique corresponding ordinal value
ORD(C) which is a non-negative integer. If I is the integer
value ORD(C) then CHR(I) has the character value C. In most
implementations,

ORD('0')-ORD(' r)- 1-ORD('2')-2. . .-ORD('9')-9.

SUCC(C) of character value C is the next character value, if
any, after C. PRED(C) is the previous character value if any.

An enumerated type has the form (identifieri,identifierI).
Each identifier is a newly defined value; it names a member of 4n
enumerated set. For example (BLEU,BLANC,ROUGE) defines the type
whose values are the three colors in the French flag. Enumerated
types can be assigned and compared but not read or written. ORD,
CHR, SUCC and PRED can be applied to enumerated types. For
example, ORD(BLEU) is 0 and SUCC(BLEU) is BLANC. These functions
can also be applied to Boolean; ORD(FALSE)»0 and
SUCC(FALSE)-TRUE.

The following are scalar types: INTEGER, BOOLEAN, CHAR and
enumerated types. Scalar types can have subranges; these can be
array index types. Case labels can be of scalar types. FOR loop
index variables can be of scalar types.

Arrays can be PACKED meaning that the implementation may try
to use less space for the array at the possible cost of slower
access time. In some implementations, PACKED has no effect on
either space or type.

A literal (string) of length n, where n is two or more
characters, e.g., 'ABC', has the special type

PACKED ARRAY [1..n] OF CHAR

Values of this array type for a particular n can be compared (-,
>, <, , <>) according to the alphabetic ordering of the
collating sequence of the underlying character set. No other
arrays can be compared.

342 Appendix I

f il
cha
are
tru

In
bla
C i
is
pro
par
end

doe
bla

Thi

Thi
cha
nex

The input stream read by the predeclared procedure READ is a
e of characters, divided into lines. When there are no more
racters to be read in the file, EOF becomes true. When there

no characters to be read on a particular line, EOLN becomes
e. A character variable C can be read, for example by

READ(C)

contrast to reading numbers, this does not skip preceding
nks and ends of lines. If the next character is a blank then
s assigned the value blank. If the last character on the line
read, then EOLN becomes true and the READLN predeclared
cedure should be called. When READLN is called without
ameters, it skips any remaining characters on the line and the
of line allowing the next line to be read.

Note that READ(I) when
s not make EOF become true
nks .

reading the last number in the data
when the integer is followed by

READLN can have parameters:

READLN(variablel, variable I)

s is defined to mean

{read (variable) ; READLN

s reads each of the variables, then skips the remaining
racters of the line and skips the end of line, allowing the
t line to be read.

Specifications for the PS/k Language 343

PS/6: PROCEDURES AND FUNCTIONS

A subprogram is
program is extended to

a procedure or function. The
allow the definition of these.

form of a

A PS/6 program is: PROGRAM identifier(INPUT,OUTPUT);

[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statement!; statement I
END.

A subprogram declaration is one of the following:
procedure declaration
function declaration

A procedure declaration is:
PROCEDURE identifier

[([VAR] ident i f ieri, ident i f ier
I; [VAR] ident i f ieri, ident i f ier 1

[constant declaration]
[type declaration]
[variable declaration]
isubprogram declaration!
BEGIN

statement!; statement!
END;

:type-identifier
type-identifier!)]

A function declaration is:
FUNCTION identifier

[(identifier!; identifier ! : type-ident i f ier
!; identifier!, identifier ! : type-ident i f ier !)]:

type-identifier;
[constant declaration]
[type declaration]
[variable declaration]
!subprogram declaration!
BEGIN

statement!;statement 1
END;

The identifiers declared in the optional list following the
subprogram name are formal parameters. The call to a subprogram
consists of the subprogram's identifier followed optionally by a
parenthesized list of expressions (no parenthesized list occurs
when the subprogram has no formal parameters). These expressions
are the actual parameters. The number and type of actual
parameters must correspond to the formal parameters.

A formal parameter declared with VAR is a variable formal
parameter; those declared without are value formal parameters.
Functions may have value formal parameters but not variable

344 Appendix /

formal parameters. A value formal parameter behaves like a
variable local to the subprogram that is initialized to the value
of the actual parameter. A variable formal parameter behaves
like the actual parameter with a new name; the corresponding
actual parameter must be a variable (i.e., it must be able to
change its values). It cannot be a constant or a result of an
operation or a function call. If the actual parameter is an
array element, the array indices are evaluated at call time and
do not change.

Functions should not have side effects, meaning they should
not change (or cause to change) any but local variables or
variables local to subprograms that they call directly or
indirectly. No reading or writing should be done.

A function is called when its identifier with actual
parameter list appears in an expression. A procedure is called
when its identifier with actual parameter list appears as a
statement.

A function is given a value by an assignment within it that
assigns a value to its identifier. (Full Pascal but not PS/k
allows names of subprograms to be parameters.)

Specifications for the PS/k Language 345

PS/7: RECORDS AND FILES

The definition of type is expanded to include records and
files:

RECORD
identifierl,ident1fierI ; type
i;identifierl, identifier1 : type!

END

FILE OF type

A record is an aggregate consisting of several fields, with an
identifier defined for each field. The types of the fields are
not restricted to be scalar and can be previously defined records
and arrays. Arrays of records are also allowed. (Full Pascal
but not PS/k allows records to have variants.) A variable V of a
record type with field F has this field referred to as V.F. A
record can be PACKED.

A new statement allows fields in records to be referenced by
field name only:

WITH variablel, variable 1 DO
statement

Each variable must be of a record type. Usually the statement
will be BEGIN...END. Within the statement references to fields
of the record are by field name only. For example, if R is the
record variable and R.F is a field, then within the statement F
can be written instead of R.F.

A file is a sequence of values of its type that can be read
or written. If F is a variable whose type is FILE OF T then

WRITE(F,e)

appends a value e of type T to the end of F and

READ(F,v)

reads the next (or first) value of F into variable v of type T.
Before a file is written it must be cleared to be an empty file:

REWRITE(F)

Before a file can be read, it must be reset to its beginning:

RESET(F)

REWRITE and RESET are predeclared procedures.

Files that exist beyond the execution of a program are called
external. Files created by a program and not kept afterwards are

346 Appendix /

called local. External files are listed in the program header
which has the form

PROGRAM identifier(identifier!,identifierI);

The parenthesized list usually contains INPUT and OUTPUT as these
are the standard files for reading and writing. For example, if
INPUT, OUTPUT and F are to be used then the header is

PROGRAM identifier(INPUT,OUTPUT,F);

There is a predeclared function EOF that takes a file
variable as its parameter. When reading file F, EOF(F) is true
when there are no more items beyond the item most recently read
from the file. When a file is RESET, EOF(F) becomes false unless
the file is empty. After REWRITE(F) and WRITE(F), EOF(F) is
true. Reading when EOF is true is undefined (depends on the
implementation).

There is a predeclared type TEXT that is defined as FILE OF
CHAR. INPUT and OUTPUT are predeclared TEXT files. There is an
implicit RESET(INPUT) and REWRITE(OUTPUT) before a program begins
execution. INPUT and OUTPUT must have no other RESET or REWRITE
operations.

TEXT files other than INPUT and OUTPUT can have the same
READ, READLN, WRITE and WRITELN procedure usages as do INPUT and
OUTPUT, except that the file identifier is the first parameter in
the procedure call. These files can be reset and rewritten.

Files other than TEXT files can only be read or written using
the forms

READ(file name,variable of type T)
WRlTE(file name,expression of type T)

where the file's type is FILE OF T.

Implementations do not usually support files of files,
records of files, pointers to files or arrays of files.

Specifications for the PS/k Language 347

PS/8: POINTERS AND FILE BUFFERS

The definition of type is expanded to include pointers:

t type-identifier

For example, variables P and Q are pointers to record type R.

TYPE R-RECORD...END;
VAR P,Q: f R

P is made to point to a dynamically created variable of type R by
executing the statement

NEW(P)

P can be made to point to no variable by assigning it the NIL
value:

P:-NIL

When P is pointing to a variable, this variable has its space
released by the statement

DISPOSE(P)

When P has value NIL or points to a variable, Q can be assigned
the same pointer value:

Q: -P

Pt denotes the variable pointed to by P. For example, when P and
Q are pointing to variables, Qt:-Pt assigns the variable pointed
to by P to the variable pointed to by Q. If P is not pointing to
a variable then Pt is meaningless. Most implementations do not
allow pointers to files.

Pointers can be used to create recursive data structures.
For example, NEXT in a PERSON record type points to another
variable of type PERSON.

TYPE LINK-fPERSON;
PERSON-

RECORD
• • •

NEXT; LINK
END;

For each file variable F, there is a buffer variable for F
that is denoted Ft. When file F is being read. Ft gives the
value of the next item that will be READ. When file F is being
written. Ft gives the next value to be appended to the file. The
definition of READ(F,v) for FILE OF T and v of type T is:

348 Appendix /

V : ■ F f ;

GET(F)

The GET procedure advances the file so that Ft locates the next
value in the file if any exists. If there are no more items in
the file then Ff becomes undefined (implementation dependent) and
EOF(F) becomes true. When a file is RESET, Ft locates the first
value (if any) in the file. Attempting to GET(F) when EOF(F) is

true is undefined.

The definition of WRITE(F,e) for FILE OF T and e of type T

i s :

Ft : "e;

PUT(F)

The PUT procedure appends the value in Ft to the end of the file;
Ft becomes undefined. PUT is defined only when EOF(F) is true.

Appendix 2
SYNTAX OF PS/k

This is the syntax of full Pascal with expressions omitted
and these Pascal features eliminated: GOTO statements, label
declarations, sets, variant records and subprograms as
parameters.

Notation: [item] means the item is optional
litemi means the item repeated zero or more times.

A program is: PROGRAM identifier(identifierl,identifier1);
[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statement I; statement I
END.

A subprogram declaration is one of the following:
procedure declaration
function declaration

A procedure declaration is:
PROCEDURE identifier

[([VAR]identifier I,identifierI : type-identifier
I;[VAR]identifier 1,identifier1 : type-identifier!)]

[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statement I;statement!
END;

349

350 Appendix 2

A function declaration is:

FUNCTION identifier

[(identifier I, identifier1 : type-identifier
l;identifier i,identifier1 : type-identifier1

type-identifier ;
[constant declaration]
[type declaration]
[variable declaration]
Isubprogram declaration!
BEGIN

statement I; statement I
END;

A constant declaration is: CONST identifier"constant;
lidentifier"Constant;!

A type declaration is: TYPE identifier"type;
lident i f ier "type ; I

A variable declaration is: VAR identifier 1,identifierI : type;
{identifier I,identifierI : type;!

A type is one of the following:

INTEGER
REAL
BOOLEAN
CHAR
(identifier I, identi f ier I)
constant..constant
[PACKED] array-type
[packed] record-type
[PACKED] FILE OF type
t type
type-identifier

An array-type is:

ARRAY]type!,type I] OF type (square brackets are special symbols

A record-type is:
RECORD

identifier I,identifier I : type
l;identifier I, identifier I : type I

END

A statement is one of the following:
WRITE([file name,] output-item I,output-itern I)
WRITELN[([file name,]output-item I,output-item I)]
READ([file name,] variable I,variable!)
READLN[([file name,] variable i,variable!)]
PAGE

variable:"expression

BEGIN

statementi; statement I

(enumerated type)
(subrange type)

END

Syn tax o f PS/k 351

IF condition THEN
statement

[ELSE
statement 1

CASE expression OF
constant I, constant 1: statement
i;constant I, constant h: statement!

END

WHILE expression DO
statement

REPEAT
statement i; statement!

UNTIL expression

FOR variable-identifier:“expression TO expression DO
statement

FOR variable-identifier:-expression DOWNTO expression DO
statement

WITH variable 1,variable! DO
statement

procedure-identifier[(expression !,express ion!)]

(empty statement--contains nothing)

t

►

rif"'-’

s

'ftik'^W4

» •

..... ... _

t * • ^ -iCfiotit ^

• r. 4» ^Tfi^ci i4f«UK

'f 2m * u • «rvMi

\^irA«|}t’*4(*4.'§* 401
;ir4li a <4. t»

‘ .■ * . « •: « I

4 . v;* i **1

■ irw.' .
X

* t»»• ■ l- . 14

iV.
'JE-

Appendix 3
PREDECLARED
PASCAL FUNCTIONS

For these predeclared functions, the parameter may be real or
integer. The result is real.

SIN(x) - sine of x radians.
COS(x) - cosine of x radians.
ARCTAN(x)- arctangent of x in radians.
LN(x) - natural logarithm of x.
EXP(X) - e to the x power.
SQRT(x) - square root of x.

For these functions a real parameter produces a real result; an
integer parameter produces an integer result

ABS(x) - absolute value of x.
SQR(x) ~ X squared (x*x).

For these functions the arguments must be real; the result is
integer,

ROUND(x) - the integer part of the number rounded.
TRUNC(X) ~ the integer part of the number truncated.

These functions have a Boolean value.

EOF [(file name)] - value i s false unless the end of the
file has been reached.

EOLN [(file name)] - value i s false unless the end of the
current 1 ine of the f i le has been reached.

If no parameter is given for these two functions the INPUT file
is the one that they refer to.

This Boolean function requires an integer parameter:

ODD(x) - value is true if x is an odd integer.

353

354 Appendix 3

For these functions the parameter must be a scalar type, that is,
integer, Boolean, char, or enumerated type (or any subrange of
such a type):

SUCC{x) - has a value which is the successor to x in the
ordering.

PRED(X) has a value which is the predecessor of x in the
ordering.

The ORD function is used with parameter of a scalar type.

ORD(x) - yields an integer value corresponding to the ordinal
value of the character in the set of characters.
The actual value of a character may vary from one
compiler to another but alphabetic characters are
always in alphabetical order.

CHR(X) yields a character value corresponding to the integer
X. This is the inverse function of ORD, so CHR(ORD(C))-C

for any character C.

Appendix 4
SUMMARY OF PASCAL
INPUT/OUTPUT FEATURES

BASIC FILE HANDLING

PUT(f) appends the value of buffer variable ft to the file f.
EOF(f) must be true before the PUT and remains true
after. The value of ft becomes undefined.

GET(f) advances the file position; buffer variable ft is
assigned the next value in the file if any. If none
exists, ft is undefined. EOF(f) must be false before

the GET.

RESET(f) resets the file position to the first position; file
buffer ft is assigned the first value in the file if
any. If none exists, ft is undefined. EOF(f) becomes
false unless the file is empty in which case EOF(f)
becomes true.

REWRITE(f) discards the present contents of the file if any.
EOF(f) becomes true. A PUT(f) but not a GET(f) can be
executed next.

Note: The standard text files INPUT and OUTPUT are implicitly
declared and RESET(INPUT) and REWRITE(OUTPUT) are performed
automatically. The Pascal program must not RESET or REWRITE the
INPUT or OUTPUT files.

BASIC READING AND WRITING

For a file variable f declared as FILE OF t, READ and WRITE
are defined as:

READ([f,]v): (variable v is of type t)
V : -f t ;

GET(f)
355

356 Appendix 4

WRITE([f,]e): (expression e is of type t)
ft : ■ e ;
PUT(f)

If the first parameter of READ is omitted, INPUT is assumed. If
the first parameter of WRITE is omitted, OUTPUT is assumed.

TEXT FILES

There is a predeclared type TEXT defined as FILE OF CHAR.
The standard files INPUT and OUTPUT are TEXT files. Generalized
forms of READ and WRITE including READLN and WRITELN can be used
with TEXT files.

TEXT files are divided into lines. If when reading file f the
last character of a line of the file is read, EOLN(f) becomes
true.

WRITELN[(f)] completes the current line of file f; the next
line can then be written.

READLN[(f)] skips the rest of the current line of file f; the
next line can then be read.

When f is omitted, OUTPUT is assumed for WRITELN, INPUT for
READLN.

READLN and WRITELN can have multiple parameters.

WRITELN(fl, output-item 1) is defined as:

IWRITE(f,output-item);I WRITELN(f)

READLN(f I,variable I) is defined as:

IREAD(variable);I READLN(f)

As before the file parameter f is optional.

For TEXT files the variable of a read must be of type CHAR,
REAL or (subrange of) INTEGER. If REAL, preceding blanks and
line ends are skipped and an optionally signed number value
(unsigned integer or unsigned real) is read. If INTEGER, the
same action is taken but the input value must be an integer.

For TEXT files the output-item must have one of the forms

(a) e
(b) e:width

(c) e:width:fractional digits (only for REAL value "e")

where "e" is an expression value to be printed and
field width to hold the printed value.

"width" is the

Summary of Pascal Input/Output Features 357

If e is a literal (string) and the width is not given, then
the width is taken to be the number of characters in the string.
If the width is given then the printed item is the string value
padded with blanks on the left to the specified width.

If e is an integer value then it is printed right-justified
in a field of "width" characters. If width is not given then the
field width depends on the implementation, but a width of 10 is
typical.

If e is a REAL value then it is printed right-justified in a
field of "width" characters. Where the default width is
implementation dependent, but 22 is typical. Forms (a) and (b)
cause the REAL value to be printed with its exponent value. Form
(c) causes printing without the exponent in fixed point form with
the specified number of fractional digits. For example,
1.7324E1;6:2 causes this to be printed: b17.32 (where b means
blank) .

PAGE[(f)] starts a new page in file f (assumes
OUTPUT file when f is omitted).

- . I. ■»*;

ii ' If k 1 A i«
‘f ‘, '■■ ‘ i-' ’T , ,• *) t • ♦. X I* J

■U • •'

” -ii'. ? t
^ w--— — •IfC tfr* ■

1. ifJifji sf'Wi'J*' ■. . _
■ '.. • *fc*

r '■ u

^ ; <t ■ #.' • i #^1 « f / J ?»

• iWit #«*• ^MNiMK
• ' '-ii

k-
:* i «»• ' •■■

i ti \

wt, «?ce' ri<;«

<i4#in4^jKo« i^’v.a*4,. #311111
« »v#.^ ^ C J . ^ ‘ • m($ «;§ ». : ,h

4 • M ..■■■•■
V *1 ii^t$ «

f !
(i » •

#%• *' 1 /
• • >' * I i

• '. • * % ^«f I*ii .\ XII

m «

t .

4P«-. ' ■■* ♦

« #»

V f *« 4

f »

ft
*

rl;M T
^ tf W .*

• * - ’ (■ ’

■t I .M ♦ ► M 4

ft •

ll># •
‘ », . i f

■♦ * t
• ' *

• • *<

Appendix 5

COLLATING SEQUENCE

The order determining comparisons among character values is
determined by the character collating sequence of the
implementation. For most implementations, ORD(C) for character
value C returns the numeric value of the representation of C.
For most implementations

ORD('O')-ORD('1')-1-ORD('2')-2...-ORD('9')-9

The EBCDIC collating sequence used, for example, on the IBM 360
computer and its successors, does not have contiguous values for
letters. For example, a 360 Pascal implementation should have;

ORD('A')-ORD('B') -1 but ORD (' R ') OORD (' S ') -1

Fortunately, the following holds for most collating sequences
including EBCDIC.

'A'<'B'<'C'...<'Z'
ORD('A')<ORD('B')<ORD('C')...<ORD('Z')

We will give three common encodings of the characters. Most
unprintable characters are not given. Various characters may
vary from implementation to implementation.

ASCII; Used on most microcomputers and minicomputers, including
PDP-11, 8080 and successors, 6800 and successors.

0 ;

4 ;

8 ;

9 ;
10
12
1 3
32
33
34
35
36

(null character)
(EOT; end of transmission)
(backspace)
(tab)
(line feed)
(form feed)
(carriage return)

b (blank)
1
II

$

359

360 Appendix 5

37 :
38 :
39:
40 :
4 1 :
42 :
43 :
44 :
45 :
46:
47 :
48-57:
58:
59 :
60 :
6 1 :

62 :
63 :
64 :
65-90:
9 1 :
92:
93 :
94 :
95 :
96:
97-122:
123 :
124 :
125 :
126 :

%

&
' (apostrophe)
(

)

*

+

, (comma)

•

/
0 to 9

<

>
?

S

A-Z

I
\

1

_ (underscore)
\ (reverse quote)
a to z

CDC Scientific Character Set: Used in Pascal 6000.

0 :

1-26 :
27-36 :
37 :
38 :
39:
40 :
4 1 :
42 :
43 :
44 :
45 :
46 :
47 :
48 :
49 :
50 :
5 1 :
52 :
53 :
54 :
55 :

: (or unprintable)
A to Z
0 to 9

/
(

)

$
■I

b (blank)
, (comma)
•

E (equivalence,
[
]

%

7^ (or ")
r> (or _)
- ("or", or 1)
^ ("and", or t)

or #)

Collating Sequence 361

56 (up arrow, or ')
57 (down arrow, or qu
58 <

59 >

60 < (or a)
6 1 > (or *)
62 n (or question mark)
63 •

EBCDIC: Used on IBM 360 and successors and various other computers.

64 :
74 :
75 :
76 :
77 :
78 s
79 :
80 :
90 :
91 :
92 :
93 :
94 :
95 :
96 :
97 :
107;
108:
109:
110:

1 1 1 :

122 :

123 :
124 ;
125 ;
126 :
127 :
129-137:
145-153;
162-169:
193-201 ;
209-2 1 7 :
226-233 :
240-249:

b
el

<
(

+

I
&

I
$
*

)

/

>
?

a

a-l

j-r
s-z
A to I
J to R
S to Z
0 to 9

(blank)

("not")

(comma)

(underscore)

(question mark)

(single quote)

T

r ^

m

JJ

.,» ■ V r ♦ .
< |i, . <1 '

■ • .vv :i€i.iU

^

* A

T »

Appendix 6
SYNTAX DIAGRAMS
FOR FULL PASCAL

si
m

p
le

ty

p
e

364

E
CO

c
o
CO
CO 0)
Q.
X o

CO

"5
E
CO

CO
Cl

XD
CO

CO
>

o
CO 365

fa
c
to

r
^

^
‘S

u
b

ro
u

ti
n

e
s

a
s

p
a
ra

m
e
te

rs

n

o
t

in

P

S
/k

v
a
ri

a
b

le

-
7

-
M

-
=

)
-
H

e
x
p
re

ss
io

n

o
o
n ‘G

O
T

O
 s

ta
te

m
e
n
ts

n
o
t

in

P

S
/k

INDEX

ABS, 353
Accumulator, 12, 291
Accuracy, 257, 270
Actual parameter, 154, 159,

165, 343
Adding, to tree, 229
Address, of word in memory, 11,

294
Address calculation, search by,

187
Algol-60, 286, 290
Algorithm, 130, 232

developing of, 132
sorting, 137

Allocation, 240
dynamic, 240
of memory, 240

Alphabetical information, 103
Alphabetical order, 112
AND operator, 55
Approximation, 257
ARCTAN, 353
Area, computation of, 258, 260
Arithmetic expression, 23, 30
Arithmetic unit, 12
ARRAY, 91
Array, 91

of arrays, 97, 100
bounds of, 100
as data structure, 98
declaration of, 100
index of, 100
of records, 205, 213
of strings, 113
two-dimensional, 93
type, 340

Artificial intelligence, 143
ASCII collating sequence, 121,

359
Aspects of good programming,

129

368 Index

Assembler, 303
Assembly language, 295, 303
Assigning records, 213
Assignment statement, 35, 49,

335
Automatic conversion of numbers,

336
Automatic error repair, 200

Batch processing, 14
BEGIN, 28, 54, 338
Bin, 187
Binary digit, 9
Binary search, 183, 190
Binary tree, 228, 233
Bit, 9
Blank as separator, 144
Body of loop, 57
BOOLEAN, 337

expression, 337
type, 55
variable, 337

Boolean operator, 55
Boolean variable, 56
Bottom-up testing, 198
Branch, 64

in control flow, 64
of tree, 99, 229

Bubble sort, 188
Bucket, 187
Buffer, file, 242, 245, 347

file merge using, 243
Bug, in program, 197
Building block, 79
Byte, 9

Calling a procedure, 164
Card, punched, 14
Card deck, 1 5

Carriage control character, 30

Carriage return, 107
CASE statement, 67, 72, 338
Cathode ray tube screen, 14
CDC scientific character set,

Pascal 6000, 360
Central processing unit, 17
CHAR, 104, 123, 341
Character, 19, 29, 331
Character string, 103, 110, 332
Character string constant, 22
Character variable, 33
Chip, silicon, 13
CHR, 118, 124, 341, 354
Cobol, 287
Coded information, 18
Collating sequence, 359

ASCII, 121
EBCDIC, 120

Command line, 28
Comment, 41, 50, 195, 336

use of, 139
Communication among modules, 17
Comparison, 71, 337

of strings, 110
Compatible subsets, 289
Compilation, 18

of programs, 1, 318
Compiler, 305, 318
Compiling, 311-325

of assigment statement, 314
of WHILE and END, 316
of WRITELN statement, 315

Complex roots, 256
Compound condition, 85
Compound statement, 54, 56
Computer, speed of, 2
Condition, 54, 71, 337

compound, 85
test of, 57

Conditional loop, 56, 63
flow chart for, 80

Constant, 335
declaration of, 48, 335

Control card, 28
Control flow, 53

branch in, 64
structuring of, 77

Control phrase, 77
Control register, 13
Control unit, 13
Convergence, 270, 277
Conversion between characters

and numbers, 117
Conversion between

INTEGER and REAL, 40
Core, magnetic, 11

370 Index

Correctness of programs, 5,
6, 194

COS, 353

Cosine, series for, 266
Counted loop, 53
Counting variable,

final value of, 61
CPU, 17

Credit exception report, 177
CRT, 14
Curve fitting, 255, 260

DATA control card, 28, 39
Data, 49

input of, 39
reduction of, 247
retrieval of, 181

Data bank, 230
Data card, 39
Data processor, 2
Data structure, 131, 217

choosing of, 131
Data type, 33
(see also Type)
Dataset, 208, 213
Debugging, 197, 199, 202
Decimal digit, 9
Declaration, 34

of array, 91
of constant, 48, 335
of function, 164
of procedure, 163
of type, 97
of variable, 48

Defensive programming, 194
Deleting from linked list, 223
Deleting from tree, 230
Deviation, 255
Digit, 20, 331

significant, 249, 260
Disk, magnetic, 10
DISPOSE, 240, 245, 347
DIV, 38
Division, 23
Documentation, 50
Double precision, 268, 277
DOWNTO, 54
Drum, magnetic, 10
Dummy card, 58
Dummy operand, 297
Dynamic allocation, 240

EBCDIC collating sequence,
120, 361

Efficiency of program, 135
Efficiency of searching, 230

Empirical fit, 256
END, 28, 54
End conditions, 197
End-of-file, 46, 71, 107

marker for, 58, 172
End of line, 106
Enumerated type, 121, 124
EOF, 123, 212, 242, 353
EOLN, 106, 123, 353
Error, 50

automatic repair of, 200
in program, 47
in program design, 199
semantic, 46
syntax, 45

Error message, 46, 200
Evaluating formula, 248, 260
Exception reporting, 177
Executable statement, 35
Execution of instructions, 13

tracing of, 37
Exit from loop, 78, 87
EXP, 353
Exponent, 21, 331
Exponential, series for, 266
Expression, 23, 331
(see also Arithmetic expression)
Extension to a language, 290
External file, 345

False, 54
Field, 25, 30, 39, 181

size of, 172
width of, 27, 333

FILE, 345
File, 181

declaration of, 214
maintenance of, 210, 214
merge of, using buffers, 243
in secondary memory, 208
sequential, 208
TEXT, 212

File buffer, 242, 245, 347
Fitting, least-squares, 256
Flow of control, 53
Flowchart, 79, 87

for conditional loop, 80
for IFTHEN...ELSE, 80

FOR loop, 54, 70, 338
Formal language, 143
Formal parameter, 153, 159,

165, 343
Format for printing, 26, 30
Fortran, 282
Fraction part, 21

truncation of, 38

372 Index

Fractional digit, 27, 333
Function, 155, 343

declaration of, 164
designator for, 332
predeclared, 353

Generated error, 265, 276
GET, 242, 246, 348, 355
Global variable, 162
GOTO statement, 78, 87, 293
Grammar, 306
(see also Syntax)
Graphing a function, 250, 260

Hard copy, 14
Hash code, 187, 190
Hierarchical structure, 229
High-level language, 3, 6,

16, 305
Histogram, 148
Horner's rule, 264, 276
Hypothetical computer, 302

Identifier, 12, 33, 48
good choice of, 196

IF ... THEN ... ELSE statement, 64,
72, 338

example of, 68
flow chart for, 80

with multiple conditions, 86
nesting of, 67

Incompatible dialects, 289
Indentation of program, 70
Index, 54

of array, 91
of loop, 57
range of, 91

Indexed FOR loop, 54
Infinite loop, 63

Infinite series, evaluation of,
266, 277

Information, 2
alphabetical, 103
coded, 8

retrieval of, 230
retrieval system for, 143

Information explosion, 247
Information processor, 2
Initialization of loop, 57, 77
INPUT, 212
Input, 17, 333
Input device, 14

Input and output for Pascal, 355
Input and output of records, 206
Inserting into linked list,

2 1 9-220

Instruction pointer, 13, 297
Instruction repertoire, 1
INTEGER type, 34, 335
Integer, 331
Integer constant, 21, 29
Integer character, printing of,

357
INTEGER and REAL, conversion

between, 40
Integer variable, 33
Integration, numerical, 271
Interactive system, 14
Interval-halving method, 269,

277

JOB card, 28
Jump instruction, 13, 292

Key, of file, 181
Keyboard, 15
Keypunch, 15
Keyword, 50

in Pascal, 335

Label, 78, 303
instruction, 292

Labeling of output, 43
Language, 3

assembly, 295, 303
construct in, 330
formal, 143
high-level, 3
machine, 16, 295, 303
natural, 143
peculiarities of, 200
translation of, 150

Layout of record, 204
Leaf node, 229
Leaf of tree, 229
Least squares approximation, 256,

274, 278
Length of line, 107
Length of string, 106, 123
Letter, 331
Line, reading and printing of,

106
Linear equations, 258, 260,

273, 278
Linear flow of control, 77
Linear search, 181, 190
Link, 99, 218
Linked list, 217, 232

inserting into, 219-220
Literal, 22, 30, 332

printing of, 25, 356
LN, 353

374 Index

Local variable, 157, 162
Location in computer, 33
Logarithm, series for, 266
Logical expression, 337
Logical sequence, 218
Loop, 70

body of, 71
conditional, 5 6
counted, 53
examples of, 60
FOR, 54, 70, 338
infinite, 63
with multiple conditions, 85
nested, 81
problems with, 81
REPEAT...UNTIL, 63, 71
WHILE, 56, 70

Machine instruction, 12, 291
Machine language, 16, 295, 303
Machine, sequential, 13
Magnetic core, 11
Magnetic disk, 10
Magnetic drum, 10
Magnetic tape, 9
Maintenance of file, 210
Maintenance of program, 177
Mantissa, 331
Mark sense card, 15
Marker, end-of-file, 58
Mathematical software, 275, 278
Matrix, 94
Maximum magnitude of

real number, 334
Measurement error, 259
Memory, 9, 17

management of with lists, 219
management of with pointers,

239
Memory allocation, 296
Merging, sorting by, 188, 191
Meta-language, 330
Meta-symbol, 330
Microcomputer, 106
Microprocessor, 13
Minicomputer, 106
Mixed number, 21
Mnemonic name, 295, 302
MOD, 38, 118
Modular programming, 130, 169
Module, 169

prefabricated, 138
use of, 176

Moving records, 204
Multiple conditions, 88
Multiplication, 23

Multiply-dimensioned array, 100

Named constant, 336
Named type, 97, 100
Natural language, 143
Nesting, 67

of IF...THEN...ELSE
statements, 67

of loops, 81
of statements, 88
of subprograms, 157

NEW, 239, 245, 347
Newton-Raphson method, 270, 277
NIL, 237, 245, 347
Node, 223

of tree, 99
Non-terminal symbol, 308, 325
Null string, 104
Number conversion, 49
Number, mixed, 21
Numerical analyst, 249
Numerical integration, 271, 277
Numerical method, 257, 263

ODD, 353
Off-line program preparation, 1
Online computer input terminal,

1 5
Operand of instruction, 292
Operating system, 227
Operator of an instruction, 292
OR, 5 5
ORD, 117, 124, 341, 354, 359
Order, alphabetical, 112
Out-of-bounds array index, 100,

1 16
OUTPUT, 212
Output, 17, 31, 331, 333

expression for, 333
item of, 356
labeling of, 43

PACKED, 123
PACKED ARRAY, 110, 341
Packed array of characters, 110
Padding with blanks, 113
PAGE, 27, 333, 357
Paragraphing of program, 69,

71, 338
Parameter, 154

actual, 154
formal, 154
value, 154
variable, 154

Parentheses, precedence rule
for, 23

376 Index

Pascal, 3 , 6
keyword in, 35, 335
syntax diagrams for, 363

Percentage error, 265
Phases of loop, 57
Physical sequence, 218
PL/1, 282, 290
Plotting a graph, 252
Pointer, 99, 218, 347

dangling, 240, 245
instruction, 13, 297
type, 237

Polynomial equation, 256
Polynomial evaluation, 263
Pop from stack, 225
Portable program, 290
Posting of file, 210
PPS/3, 305

syntax for, 307
Precedence, rule of, 23, 30

for Boolean operators, 55
Precision, 257

loss of, 274
PRED, 121, 124, 341, 354
Predeclared function, 249, 353
Predefined enumerated type, 122
Prefabricated module, 138
Procedure, 153, 343

declaration of, 163
recursive, 225
statement, 154

Production of program, 308, 325
PROGRAM heading, 27, 34, 333
Program, 6

correctness of, 194, 202
heading statement, 209, 214
listing of, 46
maintenance of, 177
paragraphing of, 69
production of, 308
specification of, 201
testing of, 45

Programming, 1,6
defensive, 194
habits of, 202
language of, 6
modular, 130
style of, 195, 202

Propagation of error, 265, 276
Printed output, 39
Printer, 15
Printing, 24

of integer character, 357
of literal, 356
of REAL value, 357
of tree, 231

Printout, 31
PS/k, 4, 6

language specification for,
329

syntax of, 349
Pulse, 8
Punched card, 14
Punctuation mark, 20, 147
Push on stack, 224
PUT, 243, 245, 348, 355

Quadratic equation, 256
Question-answering system, 143
Queue, 226, 233

Range of index, 91
READ, 50, 335, 345

definition of, 355
Reading, 57

of characters, 104
of input, 57
of lines, 106
of Pascal, 150
of value in file, 214

READLN, 106, 123, 342, 356
REAL, 34

type, 335
value, printing of, 357

Real, 331
Real constant, 21, 29
Real variable, 33
RECORD, 345
Record, 181, 203, 212

array of, 205
input and output of, 206
layout of, 204
sorting of, 206
structure of, 204

RECORD type, 213
Recusive algorithm, 232
Recursive data structure, 238
Recursive definition, 325
Recursive procedure, 225, 233
Register, control, 13
Relational expression, 54
Relational operator, 55
Relative error, 265
Repair of error, 46
REPEAT...UNTIL loop, 63, 71
Repetition, 337
RESET, 208, 213, 345, 355
Returning from a procedure

or function, 164
REWRITE, 209, 213, 345, 355
Root of equation, 256

finding of, 269, 277

378 Index

Root node, 229
Root of tree, 99, 229
ROUND, 39, 353
Rounding, 49
Round-off error, 259, 265, 276
Rule of precedence, 23, 30

Scalar type, 118, 124, 341
Scanning words and characters,

3 1 3
Scope of a variable, 165
Search, 181-191

by address calculation, 187
binary, 183, 190
efficiency of, 230
linear, 181
time taken for, 183

Secondary memory, file in, 208
Selection, 64, 337
Semantic error, 46
Semicolon, as statement

separator, 28
Sequencing of strings, 112
Sequential control, 64
Sequential execution, 13
Sequential file, 208, 213
Sequential machine, 13
Silicon chip, 13

Significant digits, 249, 260
loss of, 265, 277

Simpson's rule, 272, 277
Simulator, 299, 303

uses for, 301
SIN, 353
Sine, series for, 266
Single precision, 268
Slope of function, 270
Software, mathematical, 275, 278
Solution tree, 130

growing of, 131
Sorting, 188

efficiency of, 189
of list, 132
by merging, 188
of records, 206

Special character, 19, 331
substitution for, 331

Special condition, 197
Specification for program, 193
SQR, 353
SORT, 353
Square bracket, 330
Statement, 20, 338

assignment, 35
BEGIN...END, 28, 54
CASE, 67

Index 379

compound, 54
empty, 351
FOR loop, 54, 70
GOTO, 78
IF...THEN...ELSE, 64, 72
PAGE, 27, 333
procedure, 154
READ, 50, 335, 355
READLN, 1 06, 123, 3 4 2'
REPEAT...UNTIL loop, 63, 71
WHILE loop, 56, 70
WITH, 208
WRITE, 26, 30, 333
WRITELN, 25, 30, 333

Structure, 77
of control flow, 77
of data, 131, 217
of loop, 77
of record, 204

Structured programming, 2, 6
Style, programming, 195
SUCC, 121, 124, 341, 354
Stack, 224, 233, 325

top of, 224
use of in recursive

procedure, 226
Step-by-step refinement, 129, 139
Stored program calculator, 13
String, 19

array of, 113
of characters, 103, 110
comparison of, 110, 124
null, 104

Subprogram, 153-163, 343
declaration of, 163
name of as parameter, 344
nesting of, 157

Subrange of enumerated type, 122
Subrange type, 96, 100, 340
Substitution for special

characters, 331
Subtree, 229
Swapping process, 136
Symbol, 19
Syntax diagrams for full

Pascal , 363
Syntax errors, 17 , 45
Syntax rule, 306, 325

Terminal, 14
Terminal symbol. 308, 325
Testing, 202

of condition. 57
exhaustive, 6
of program, 45 , 197, 202

380 Index

Text editor, 148
TEXT file, 212, 214, 346, 356
Three-way branch, 65
Time sharing, 14
TO, 5 4
Top-down approach to

programming, 129, 138
Top of stack, 224
Tracing execution, 37
Transaction, 170
Translation of program, 1, 16, 18
Translation of programming

languages, 150
Translator, 305
Tree, 228

adding to, 229
binary, 228
printing, 231

Tree structure, 99
to problem solution, 130, 139

True, 54
TRUNC, 353
Truncation error, 260
Truncation of fractional part,

38, 49
Truncation of series, 268
Two-dimensional array, 93-95
Type, 48, 337

ARRAY, 91
BOOLEAN, 55
CHAR, 104, 123, 341
enumerated, 121, 124
FILE, 345
INTEGER, 34, 335
named, 97
pointer, 237
REAL, 34, 335
RECORD, 213
scalar, 118
subrange, 96, 100, 340

VAR, 34, 48
Variable, 33, 335

Boolean, 56
declaration of, 48, 335
global, 162
local, 157
undeclared, 47
uninitialized, 47

Value formal parameter, 154,
165, 343

Value of variable, 33
Variable formal parameter, 154,

165, 343
VS computer, 293

WHILE loop, 56, 70
compiling of, 316

Width of field, 27
WITH statement, 208, 214, 345
Word, 9

length of, in computer, 9
in memory, 302
recognition, 144
statistics, 148

WRITE, 26, 30, 333, 345
definition of, 355
to file, 214

WRITELN, 25, 30, 333, 356

Zero of function, 269, 277

V

*

*

*

I t

i

<

i

VI

t

’ t ^ J i

X .* V . # ;

.Ut

, %ft ,o'

«

r
¥

%

f-

I

%

*

(•

*

\\\V^

I

«■

If •

%

j. •'

%

‘•i-.

XL.

t i

1

W6
.73
.P2H61t Holt

Prograniming standard Pascal

DATE

CC16.’84

Universi^ d
at Crs®*"- f

Library

OCMCO

0835956911
06/19/2017 10:22-2

22

